Joint modelling of multivariate longitudinal mixed outcomes and a time-to-event: a latent variable approach

Cécile Proust-Lima

Department of Biostatistics, INSERM U897, Bordeaux Segalen University

in collaboration with

Hélène Jacqmin-Gadda (Department of Biostatistics, INSERM U897)

& Hélène Amieva (Department of Neuropsychology, INSERM U897)

& ...

University of Vienna, Austria - January 21, 2013

Joint modelling in cohort studies

Multiple outcomes collected simultaneously:

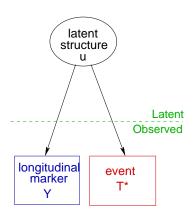
- repeated measures of one or several longitudinal markers
- time to one or several events of interest

Interest in:

- Describing the markers trajectories avoiding biases (natural history of a disease)
- Predicting the risk of event based on a longitudinal marker
- Understanding the link between multiple processes
- \rightarrow use of joint models

Principle of joint models (Henderson, Biostat 2000)

Simultaneous modelling of multiple correlated outcomes



\rightarrow latent structure u:

- individual marker characteristics (random-effects, individual deviation)
 - ightarrow shared random-effect models
- homogeneous subgroups of subjects (latent classes)
 - → joint latent class models

\rightarrow most developments for :

- a single longitudinal marker
- a Gaussian longitudinal marker

Special case of psychological & QoL scales

Bounded quantitative or ordinal longitudinal outcomes

- ex: pain scale, quality-of-life (QoL) scale (patient reported outcomes)
- ex: cognitive test, disability evaluation (indirect outcomes)
- → ceiling /floor effects
- → varying sensitivity to change ("curvilinearity")
- → linear mixed model not adapted (risk of spurious associations see Proust-Lima, AJE 2011)

Multiple outcomes measuring the same latent process

- ex: different items of quality of life
- ex: psychometric tests battery for cognitive functioning
- \rightarrow Specific interest in the dynamics of the underlying latent process ("construct", "latent trait")
- → multivariate extensions of the mixed models and joint models

A latent process mixed model for :

- one or multivariate longitudinal markers
 - quantitative (not necessarily Gaussian), bounded quantitative & ordinal outcomes

Joint latent class model :

- multivariate & mixed longitudinal outcomes + associated time-to-event
- dynamic predictive tool

Motivating application: cognitive ageing & dementia

Dementia characterised by a progressive and continuous decline of cognitive functions

- → interest in cognitive change & risk factors of cognitive change captures the dynamics of the disease progression
- → profiles of cognitive change associated with onset of dementia natural history of the disease & prediction of dementia

Cognition= latent process defined in continuous time

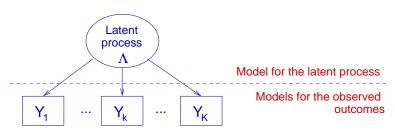
Outcomes = Psychometric tests

- → collected in discrete times
- → noisy measures of cognitive functions
- \rightarrow ceiling/floor effects, curvilinearity, ...

Latent process model

Latent process model: the principle

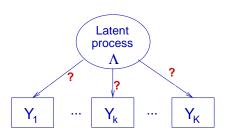
Latent variable framework extended to longitudinal setting (Dunson, SMMR 2007)



- Structural equations : latent process described according to covariates, time, etc
- Measurement models: link between the latent process and the outcomes

Latent process model: the principle

Latent variable framework extended to longitudinal setting (Dunson, SMMR 2007)



- Structural equations : latent process described according to covariates, time, etc
- Measurement models: link between the latent process and the outcomes

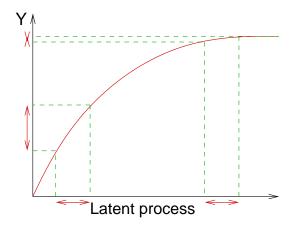
What is the link between the latent process & the outcomes?

Linear transformation (Roy, Bcs 2000)



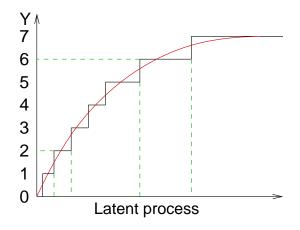
 \rightarrow same sensitivity in the whole range Y

Nonlinear transformation (Proust, Bcs 2006; Proust-Lima, 2012)



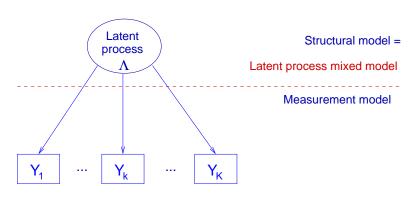
→ ceiling /floor effects + varying sensitivity i.e. curvilinearity

Threshold transformation (Liu, Bcs 2006; Proust-Lima, 2012)



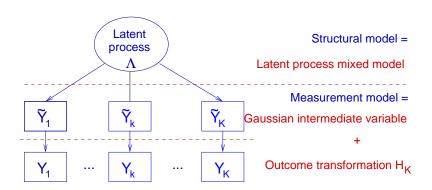
 \rightarrow Interval of Λ values for a given level of Y

Multivariate general latent process mixed model



for clarity, time is omitted here

Multivariate general latent process mixed model



for clarity, time is omitted here

Specification of the general latent process mixed model

For outcome k (k = 1, ..., K), subject i (i = 1, ..., N) & occasion j ($j = 1, ..., n_{ik}$):

- Structural model for the latent process :

$$\Lambda_i(t) = \mathbf{X_{1i}}(t)^T \boldsymbol{\beta} + \mathbf{Z_i}(t)^T \mathbf{u_i} + w_i(t), t \in \mathbb{R}$$

with $u_i \sim MVN(\mu, D)$, $w_i(t)$ Brownian motion & $u_{i0} \sim N(0, 1)$ for identifiability

Measurement models for the observed outcomes

$$H_k(Y_{ijk}; \eta_k) = \tilde{Y}_{ijk} = \Lambda_i(t_{ijk}) + \mathbf{X}_{2i}(t)^T \gamma_k + \alpha_{ik} + \epsilon_{ijk}$$

with $\alpha_{ik} \sim \mathcal{N}(0, \sigma_{\alpha_k}^2)$, $\epsilon_{ijk} \sim \mathcal{N}(0, \sigma_{\epsilon_k}^2)$ with H_k = parameterised transformation with parameters η_k

Families of parameterised transformations

Quantitative outcome (general case):

```
H_k(;\eta) = family of increasing monotonic functions
```

- → Linear combination (Gaussian assumption) [2 parameters] i.e. standard linear mixed model
- → Standardised Beta CDF [4 parameters]
- \rightarrow Quadratic I-splines [m+2 parameters for m nodes]

Families of parameterised transformations

Quantitative outcome (general case):

```
H_k(; \eta) = family of increasing monotonic functions
```

- → Linear combination (Gaussian assumption) [2 parameters] i.e. standard linear mixed model
- → Standardised Beta CDF [4 parameters]
- → Quadratic I-splines [m+2 parameters for m nodes]

Bounded quantitative outcome [same number of parameters]:

→ Same definition in (min,max) & probability of observing min/max

Families of parameterised transformations

Quantitative outcome (general case):

 $H_k(; \eta) =$ family of increasing monotonic functions

- → Linear combination (Gaussian assumption) [2 parameters] i.e. standard linear mixed model
- → Standardised Beta CDF [4 parameters]
- → Quadratic I-splines [m+2 parameters for m nodes]

Bounded quantitative outcome [same number of parameters]:

→ Same definition in (min,max) & probability of observing min/max

Ordinal outcome with M_k levels [M_k -1 parameters]:

$$Y_{ijk}=m \Leftrightarrow \eta_m \leq ilde{Y}_{ijk} < \eta_{(m+1)} \quad ext{with } m \in \{0,M_k-1\} \ & \eta_0 = -\infty \& \eta_{\mathcal{M}_k} = +\infty$$

i.e. cumulated probit model

Maximum likelihood estimators

Individual contribution **without** ($l_i^{(1)}$) outcomes:

ordinal or bounded

$$l_i^{(1)} = f(Y_i) = f(\tilde{Y}_i) \times \prod_{k=1}^K \prod_{i=1}^{n_{ik}} J(H_k(Y_{ijk}))$$

with
$$Y_i = (Y_{i1}, ..., Y_{iK}) \& \tilde{Y}_i = (\tilde{Y}_{i1}, ..., \tilde{Y}_{iK})$$

& J Jacobian of the transformation & $f(\tilde{Y}_i)$ Multivariate Gaussian

Iterative (Marquardt) algorithm

Maximum likelihood estimators

Individual contribution without $(l_i^{(1)})$ or with $(l_i^{(2)})$ ordinal or bounded outcomes:

$$l_{i}^{(1)} = f(Y_{i}) = f(\tilde{Y}_{i}) \times \prod_{k=1}^{K} \prod_{j=1}^{n_{ik}} J(H_{k}(Y_{ijk}))$$

$$l_{i}^{(2)} = f(Y_{i}) = \int_{u_{i}} \prod_{k=1}^{K} \int_{\alpha_{ik}} \prod_{j=1}^{n_{ik}} f_{y}(Y_{ijk}|u_{i}, \alpha_{ik}) f_{\alpha}(\alpha_{ik}) d\alpha_{ik} f_{u}(u_{i}) du_{i}$$

with
$$Y_i = (Y_{i1}, ..., Y_{iK}) \& \tilde{Y}_i = (\tilde{Y}_{i1}, ..., \tilde{Y}_{iK})$$

- & J Jacobian of the transformation & $f(\tilde{Y}_i)$ Multivariate Gaussian
- \rightarrow in $l_i^{(2)}$: numerical integrations by Gauss-Hermite (no Brownian motion)

Iterative (Marquardt) algorithm

Dataset: PAQUID cohort

3,777 subjects of 65 years and older followed up over 17 years

At each follow-up:

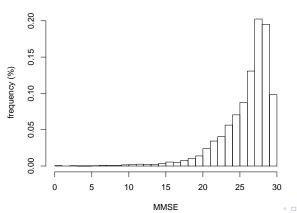
- Two phase diagnosis of dementia
- Battery of psychometric tests (global functioning, memory, fluency, etc)
- Risk factors (behaviour, health, occupation, etc)

Application 1: Curvilinearity of MMSE (Proust-Lima, BJMSP 2012)

Investigate the curvilinearity of the MMSE using the repeated measures collected over 17 years in PAQUID

MMSE= Mini Mental State Examination:

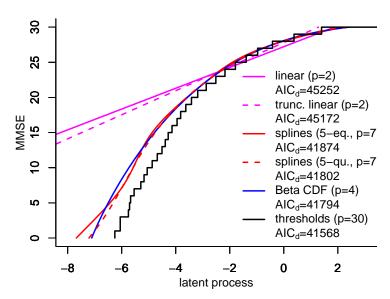
→ a 30-point scale evaluating global cognitive functioning



- → Linear mixed model for the underlying latent process (with age & age²)
- → Comparison of different estimated

transformations H

Estimated transformations



Summary

Comparison of models via AIC_d: "discretized" AIC

- different measures (Lebesgues and counting)
- computes posterior likelihood from continuous models according to the counting measure
 - → large differences in goodness-of-fit for MMSE
 - → favours nonlinear transformations

Curvilinearity (varying sensitivity to change) = intrinsic property

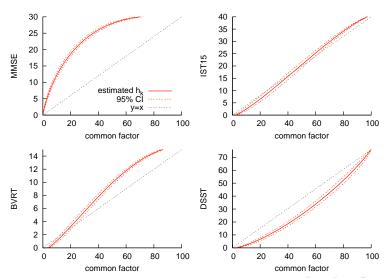
- independent of covariate relationships, population (Philipps, 2013)
- can exist with any measurement scale

Not accounting for it in LMM potentially induces spurious associations

→ type I error inflated up to 93% for MMSE (Proust-Lima, AJE 2011)

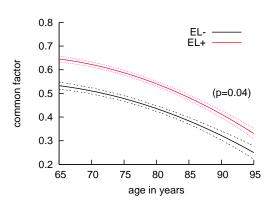
Application 2: Metrological properties of 4 psychometric tests

(Proust-Lima et al., AJE, 2007)



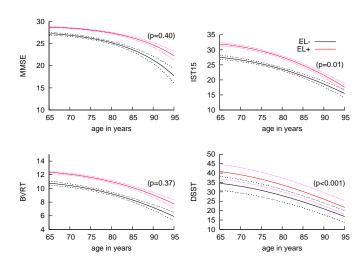
Application 3: Education and cognitive decline (Proust-Lima, P&A, 2008)

Distinction between education effect on the common factor of 4 psychometric tests ...



Application 3: Education and cognitive decline (cont'd)

... and its contrasts (differential effects) on the 4 psychometric tests



Concluding remarks

Handles outcomes of different natures :

- → accounts for metrological properties of scales (curvilinearity)
- → provides correct inference
- → computationally easy with Beta CDF or I-splines

implemented in 1cmm R package (univariate case online, multivariate case on request)

In the multivariate setting:

- \rightarrow comparison of outcomes (sensitivity/ covariates)
- → increased power/information used
- → includes IRT models for longitudinal data as a specific case

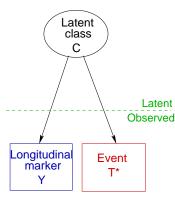
Limits:

- → single latent process (unidimensionality of the outcomes)
- \rightarrow missing at random data
- → homogeneous population

Joint latent class model

Joint latent class model (JLCM) (Lin, JASA 2002, Proust-Lima, SMMR 2012)

With a single outcome,



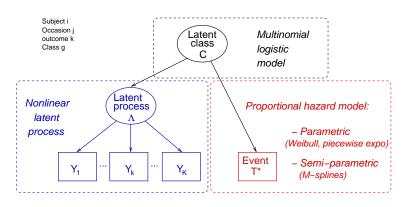
Subject i (i=1...,N) Class g (g=1,...,G) Occasion j (j=1...,ni)

- Latent classes of subjects :
- \rightarrow latent class membership :

$$\pi_{ig} = P(c_i = g|X_{1i}) = \frac{e^{\xi_{0g} + X_{1i}^T \xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X_{1i}^T \xi_{1l}}}$$

- Given class g,
- → specific marker evolution (linear mixed model)
- → specific risk of event (prop. hazard model)

Extended joint latent class model for multivariate outcomes (Proust-Lima, CSDA 2009)



$$\begin{array}{lll} \Lambda_i(t)\mid_{c_i=g}=\mathbf{X_{1i}}(t)^T \textcolor{red}{\beta_g} + \mathbf{Z_i}(t)^T \textcolor{red}{\mathbf{u_{ig}}} & \leftarrow \text{heterogeneous mixed model} \\ & \leftarrow \text{constraints}: u_{0i1} \sim N(0,1) \\ Y_{iik}\mid \Lambda_i(t_{iik}), c_i=g & \leftarrow \text{outcome-specific observation equation} \end{array}$$

Maximum likelihood estimators

Estimation for a fixed number of latent classes G (parameters θ_G)

Individual contribution to the likelihood:

ightarrow conditional independence given the latent classes

$$l_i(\theta_G) = \sum_{g=1}^G \pi_{ig} f(Y_i \mid c_i = g; \theta_G) \lambda(T_i \mid c_i = g; \theta_G)^{E_i} S_i(T_i \mid c_i = g, \theta_G)$$

with $S_i(t \mid c_i = g, \theta_G)$ the class-specific survival function and $f(Y_i \mid c_i = g; \theta_G)$ computed as in the initial latent process model

Iterative (Marquardt) algorithm

Optimal number of latent classes chosen using the BIC, ICL, CI test, ... (Hawkins, CSDA 2001; Han, SiM 2007, Jacqmin-Gadda, Bcs 2010)

implemented in lcmm R package (univariate case for the moment) + HETMIXSURV.f90 program

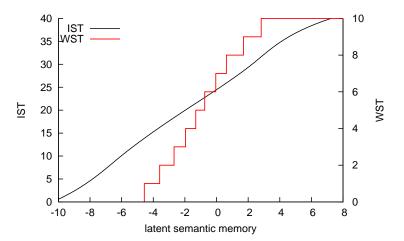
Application 4: profiles of semantic memory

Profiles of semantic memory decline associated with onset of Alzheimer's disease in the elderly

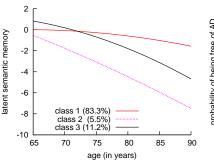
- 2 longitudinal measures of semantic memory :
 - → Wechsler similarities test (WST) (ordinal in {0-10})
 - → Isaacs Set Test (IST15) (discrete quantitative in {0-40})
- Age at onset of Alzheimer's disease (AD) :
 - → right censored and left truncated data
- Binary covariates : education, gender

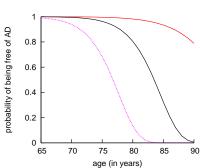
Subsample of 2484 subjects (417 incident AD -16.8%) from PAQUID

Predicted transformations of the markers



Predicted trajectories of semantic memory & probability of being free of dementia with age

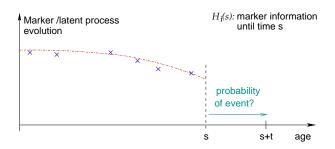




Predicted mean evolution of the latent process in each class

Predicted probability of being free of AD in each class

Prognostic/early detection tools derived from joint models (Proust-Lima, Biostat 2009, Rizopoulos, Bcs 2011, Proust-Lima, SMMR 2012)



Predicted probability of event in (s,s+t) in the JLCM:

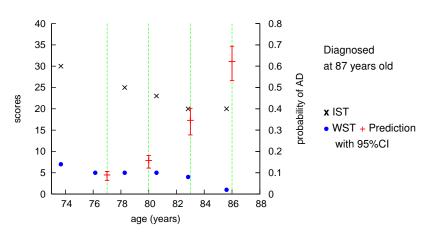
$$P(T_{i} \leq s + t \mid T_{i} > s, \mathcal{H}_{i}(s), \underbrace{X_{i}}_{i}; \hat{\theta}) =$$

$$= \sum_{g=1}^{G} P(T_{i} \leq s + t \mid c_{i} = g, T_{i} > s, \underbrace{X_{i}}_{i}; \hat{\theta}) \times \underbrace{P(c_{i} = g \mid \mathcal{H}_{i}(s), \underbrace{X_{i}}_{i}, T_{i} > s; \hat{\theta})}_{\hat{\pi}_{ig}^{y_{s}}}$$

4日 > 4周 > 4 日 > 4 日 > 日

Dynamic predictive tool of AD

Probability of dementia in 5 years updated every 3 years



Concluding remarks

JLCM, alternative to the shared random-effect approach

- → different assumptions ...
 - heterogeneous population
 - no identified shared marker characteristic
 - multiple covariate evaluations

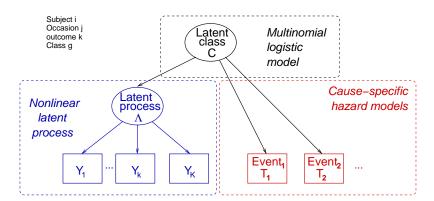
Straightforward extension to multivariate mixed longitudinal outcomes

- particularly adapted to QoL & psychological scales
- dynamic predictive tools from any longitudinal information

From this ...

- evaluation of the predictive accuracy (Error of prediction, EPOCE, etc)
- extension to multiple times-to-event (dementia & death)

Extension to multiple times-to-event



Biostatistics Team

http://biostat.isped.u-bordeaux2.fr

References

Latent variable mixed models:

- Dunson (2007). SMMR, 16, 399-415
- Liu & Hedecker (2006). Biometrics, 62, 261-8
- Proust, Jacqmin-Gadda, Taylor et al. (2006). Biometrics, 62, 1014-24
- Proust-Lima, Amieva et al. (2007). Am J Epidemiol, 165, 344-50
- Proust-Lima, Amieva et al. (2008). Psychol & Aging, , 23(3), 608-20
- Proust-Lima, Dartigues & Jacqmin-Gadda (2011). Am J Epidemiol, 174(9), 1077-88
- Proust-Lima, Amieva & Jacqmin-Gadda (2012). British J Math Stat Psychol
- Roy & Lin (2000). Biometrics, 56, 1047-54

Joint models and dynamic predictions:

- Han, Slate & Pena (2007). Stat Med, 26(29), 5285-302
- Henderson, Diggle & Dobson (2000). Biostatistics, 1(4), 465-80
- Jacqmin-Gadda, Proust-Lima, Taylor & Commenges (2010). Biometrics, 66, 11-19
- Lin, Turnbull, McCulloch & Slate (2002). JASA, 97, 53-65
- Proust-Lima, Letenneur & Jacqmin-Gadda (2007). Stat Med, 26, 2229-45
- Proust-Lima, Joly & Jacqmin-Gadda (2009). CSDA, 53, 1142-54
- Proust-Lima & Taylor (2009). Biostatistics, 10, 535-49
- Proust-Lima, Sène, Taylor & Jacqmin-Gadda. (2012). SMMR early view
- Rizopoulos (2011). Biometrics, 67, 819-29

