Flexible Sequential Designs for Multi-Arm Clinical Trials

Dominic Magirr*, Nigel Stallard**, Thomas Jaki*

*Department of Mathematics and Statistics, Lancaster University **Warwick Medical School, University of Warwick

June 2013

Outline

Example

Multi-arm group-sequential methods

Flexible adaptive designs

Purpose of talk

Seamless phase II/III
 Multi-arm multi-stage
 Subgroup selection

Group sequential/
M.V.Normal methods

P-value combination
 & closure principle

Fasy to visualize
 Sufficient statistics
 Inflexible

Flexible

A multi-arm phase II trial

Wilkinson & Murray, 2001; Stallard & Todd, 2003.

Objective: "To investigate whether **Galantamine** significantly improves the core symptoms of **Alzheimer's** disease".

18 mg/day

Treatment: Galantamine 24 mg/day vs. Placebo

36 mg/day

Endpoint: Change in Alzheimer's Disease Assessment Scale (assumed to be normally distributed) after 3 months of treatment.

Hypothesis testing

In this case there are 3 null hypotheses of interest:

$$H_1: \theta_1 \leq 0,$$

$$H_2:\theta_2\leq 0,$$

$$H_3:\theta_3\leq 0,$$

where θ_k is the treatment effect of dose k = 1, 2, 3.

 H_k will be rejected if $S_k = (\bar{X}_k - \bar{X}_0)n/2\sigma^2$ is "large enough".

Statistical monitoring First interim analysis

Statistical monitoring Second interim analysis

Statistical monitoring Second interim analysis

- 36mg/day arm was dropped due to safety concerns.
- Recruitment to 18mg/day arm was continued (the lower boundary was later crossed at the 4th interim analysis).
- It was concluded that 24mg/day was safe and effective.
- Is this conclusion justified?

Type I error probabilities

- 1. What is the probability that S_k crosses the upper boundary?
- 2. What is the probability that $\max_{k=1,2,3} S_k$ crosses the upper boundary?

Per-comparison error rate

$$\begin{split} P_0\left\{S_k^{(1)} \in R_1\right\} &= 0.001 \\ P_0\left\{S_k^{(1)} \in C_1\right\} \cap \left\{S_k^{(2)} \in R_2\right\} &= 0.008 \\ &\vdots \\ P_0\left\{S_k^{(1)}, \dots, S_k^{(4)} \in C_1 \times \dots \times C_4\right\} \cap \left\{S_k^{(5)} \in R_5\right\} &= 0.0005 \end{split}$$

$$P_0 \bigcup_{i} \left\{ S_k^{(1)}, \dots, S_k^{(j-1)} \in C_1 \times \dots \times C_{j-1} \right\} \cap \left\{ S_k^{(j)} \in R_j \right\} = 0.025$$

Familywise error rate

$$P_0\left\{S_k^{(1)} \in R_1\right\} = 0.001$$

$$P_0\left\{S_k^{(1)} \in C_1\right\} \cap \left\{S_k^{(2)} \in R_2\right\} = 0.008$$

$$\vdots$$

$$P_0\left\{S_k^{(1)}, \dots, S_k^{(4)} \in C_1 \times \dots \times C_4\right\} \cap \left\{S_k^{(5)} \in R_5\right\} = 0.0005$$

$$P_0 \bigcup_{j} \left\{ S_k^{(1)}, \dots, S_k^{(j-1)} \in C_1 \times \dots \times C_{j-1} \right\} \cap \left\{ S_k^{(j)} \in R_j \right\} = 0.025$$

$$P_0 \bigcup_{k=1}^{3} \bigcup_{j} \left\{ S_k^{(1)}, \dots, S_k^{(j-1)} \in C_1 \times \dots \times C_{j-1} \right\} \cap \left\{ S_k^{(j)} \in R_j \right\} = 0.063$$

Control of familywise error rate

To control the FWER at level α , one could simply increase the upper stopping boundary, i.e., solve the following equations for u_1, \ldots, u_5 .

$$P_0 \bigcup_{k} \left\{ S_k^{(1)} \in R_1 \right\} = \alpha_1^*$$

$$P_0 \bigcup_{k} \bigcup_{j=1}^{2} \left\{ S_k^{(1)}, \dots, S_k^{(j-1)} \in C_1 \times \dots \times C_{j-1} \right\} \cap \left\{ S_k^{(j)} \in R_j \right\} = \alpha_2^*$$

 $P_0 \bigcup_{k} \bigcup_{i=1}^{5} \left\{ S_k^{(1)}, \dots, S_k^{(j-1)} \in C_1 \times \dots \times C_{j-1} \right\} \cap \left\{ S_k^{(j)} \in R_j \right\} = \alpha_5^*$

where $\alpha_1^* \leq \cdots \leq \alpha_5^* = \alpha$.

See Follmann et al.,1994; Chen et al., 2010; Magirr, Jaki & Whitehead (MJW), 2012.

Alternative group-sequential/treatment selection design Stallard & Todd (ST), 2003

- Let $M = \left\{ k : S_k^{(1)} = \max_{k'} S_{k'}^{(1)} \right\}$, i.e., "the best treatment at first interim analysis".
- Solve the following equations for u_1, \ldots, u_5 .

$$P_{0}\left\{S_{M}^{(1)} \in R_{1}\right\} = \alpha_{1}^{*}$$

$$P_{0}\left\{S_{M}^{(1)} \in C_{1}\right\} \cap \left\{S_{M}^{(2)} \in R_{2}\right\} = \alpha_{2}^{*} - \alpha_{1}^{*}$$

$$\vdots$$

$$P_{0}\left\{S_{M}^{(1)}, \dots, S_{M}^{(4)} \in C_{1} \times \dots \times C_{4}\right\} \cap \left\{S_{M}^{(5)} \in R_{5}\right\} = \alpha_{5}^{*} - \alpha_{4}^{*}$$

Power and sample size

The Galantamine trial was powered such that

$$P_{\theta_k=0.5\sigma}("S_k \text{ crosses upper boundary"}) = 0.9.$$

- This takes no account of multiple comparisons.
- However, there is no obviously better definition of power in a multi-arm trial.
- One possibility (Dunnett, 1984) is to consider a least favourable configuration of treatment effects.

Least favourable configuration Dunnett, 1984

Need to consider two effect sizes:

- 1. δ , the smallest clinically relevant improvement (standard design question).
- 2. $0 \le \delta_0 < \delta$, the largest marginal improvement such that if $\theta_k = \delta_0$ we would prefer not to proceed further in investigation of treatment k.
- (δ_0, δ) is 'zone of indifference'.
- 'Least favourable configuration' (LFC): $\theta_1 = \delta$, $\theta_k = \delta_0$ for $k = 2, 3, \dots$

Sample size based on LFC

Choose n such that

$$P(\text{"select treatment 1"} \mid \mathsf{LFC}) = 1 - \beta,$$

where

"select treatment 1"
$$\equiv$$
 " S_1 crosses upper stopping boundary" (before S_2, S_3, \ldots)

Summary of group-sequential multi-arm trials

- 1. Require relatively simple (if somewhat tedious) calculations to set up.
- 2. Once stopping boundaries and sample size are found \rightarrow monitoring the trial is straightforward.
- 3. All decisions are based on the sufficient statistics $S_k = (\bar{X}_k \bar{X}_0)n/2\sigma^2$.
- 4. Familywise error rate is controlled "in the strong sense",

$$\sup_{\theta} P_{\theta} \left\{ \text{reject one (or more) true null hypothesis} \right\} \leq \alpha$$

5. Major disadvantage: Lack of flexibility → think of what happened in Galantamine trial.

Flexible design methodology

- P-value combination functions. (Bauer & Köhne, 1994)
- Conditional error rate. (Proschan & Hunsburger, 1995)
- Closure principle. (Marcus et al., 1976)

Combining these techniques produces very flexible treatment (or subgroup) selection phase II/III designs. E.g.

- Posch et al., 2005.
- König et al., 2008.

Flexible design methodology

MAIN IDEA: the second-stage design is not pre-specified.

ARCHETYPE: reject $H_0: \theta = 0$ in favour of $H_a: \theta > 0$ if

$$Z = \sqrt{\frac{n_1}{n_1 + n_2}} Z_1 + \sqrt{\frac{n_2}{n_1 + n_2}} \Phi^{-1}(1 - p_2) \ge 1.96,$$

where, under H_0 ,

- $Z_1 \sim N(0,1)$.
- p₂ ~ U(0,1), irrespective of first-stage data and choice of second stage test.
- n₁ and n₂ are planned first- and second-stage sample sizes, respectively.

Danger of using non-sufficient statistic Burman & Sonesson, 2006

- Suppose $n_1 + n_2 = 1000$ experimental units are to be recruited.
- This gives power 0.8 if $\theta = 0.08$ and $\sigma = 1$.
- After $n_1 = 100$ observations, it is decided to take an interim look at the data.
- Disappointingly, the observed average effect is slightly negative, $\hat{\theta} = -0.03$.

Danger of using non-sufficient statistic

Burman & Sonesson, 2006

- The experimenter doesn't consider it worthwhile to continue to collect 900 more observations, as planned.
- Instead, the experimenter collects one additional observation.
- If X₁₀₁ happens to be, say, 2.5,

$$Z = \sqrt{0.1}(-0.3) + \sqrt{0.9}(2.5) \approx 2.28.$$

- It is concluded that $\theta > 0$.
- However, $\hat{\theta} \approx -0.005$.

Danger of using non-sufficient statistic

- This is an extreme (ridiculous) example.
- Nevertheless, it captures the essence of more subtle investigations into the use of non-sufficient statistics in adaptive designs.
- See Tsiatis & Mehta, 2003; Jennison & Turnbull, 2006.
- From J & T: "the flexibility of unplanned adaptive designs comes at a price" ... "standard error-spending tests provide efficient designs, but it is still possible to fall back on flexible methods".

Proposed solution strategy

Magirr, Stallard & Jaki, 2013

Unfortunately,

 $FWER\ control + flexibility + sufficient\ statistics = impossible$

One can, however,

- 1. Set up the trial using a group-sequential multi-arm design (either ST or MJW).
- 2. If the unexpected happens \rightarrow calculate the **conditional error**.
- 3. Adjust the stopping boundaries to take account of unplanned design changes.

Example (\approx re-design of Galantamine trial)

- Consider a 3-stage trial comparing 3 experimental treatments with control.
- Suppose

$$\alpha_1^* = (1/3)0.025, \qquad \alpha_2^* = (2/3)0.025, \qquad \alpha_3^* = 0.025.$$

- Also, suppose $l_1 = l_2 = -\infty$ (non-binding futility boundary).
- Sample size is n = 34 patients per arm per stage.
- This ensures LFC power of 0.8 given $\delta = 0.5\sigma$ and $\delta_0 = 0.2\sigma$.

Stopping boundaries for test of global null hypothesis

First interim analysis

- Suppose $Z_1^{(1)} = 2$, $Z_2^{(1)} = 1.1$ and $Z_3^{(1)} = 1$.
- None of the test statistics cross the stopping boundary.
- However, treatment 1 is dropped from the study due to safety concerns.

Conditional error (MJW design)

1. Find

$$\alpha_2^*(X_1) = P_0 \bigcup_{k=1}^3 \{Z_k > u_2\} \mid X_1$$

and

$$\alpha_3^*(X_1) = P_0 \bigcup_{k=1}^3 \{Z_k \text{ crosses boundary}\} \mid X_1,$$

where X_1 is the first-stage data.

2. Find adjusted stopping boundary, \bar{u}_2 , \bar{u}_3 , such that

$$P_0 \bigcup_{k=2}^{3} \{Z_k > \bar{u}_2\} \mid X_1 = \alpha_2^*(X_1)$$

$$P_0 \bigcup_{k=2}^{3} \{Z_k \text{ crosses (adjusted) boundary}\} \mid X_1 = \alpha_3^*(X_1)$$

Stopping boundaries for test of global null hypothesis

Comments

- Effect of (unplanned) dropping of treatment arm \rightarrow boundary lowered \rightarrow more power for remaining hypotheses.
- Additional complexity: To control the FWER here, one must apply the closure principle, i.e., one must consider all 2^3-1 intersection null hypothesis \rightarrow each intersection null hypothesis requires its own adjusted boundaries.
- All calculations involve well-known properties of the multivariate normal distribution.
- See Magirr, Stallard & Jaki (2013, submitted) for details.

A small simulation study

- 1. How large is the power gain due to modified upper stopping boundary?
- 2. How much power is lost from using non-sufficient statistics?
 - Suppose we distort the pre-specified selection rule by, at the jth interim analysis, selecting

$$T^{(j+1)} = \left\{k: Z_k^{(j)} \geq \max\nolimits_{k' \in T^{(j)}} Z_{k'}^{(j)} - \epsilon \right\}.$$

- I.e., "continue with all treatments within ϵ of the best".
- Simulating the trial 100,000 times...

Simulation study - FWER

Simulation study - Power

Conclusions

- Flexibility can be added to multi-arm group sequential studies.
- It is important to put as much effort as possible into finding an appropriate multi-arm group sequential design → one should only break the sufficiency principle if absolutely necessary (something totally unexpected happens).
- In principle, same techniques could be used to change the sample size or add additional interim analyses.
- The computation only involves MVN probabilities (but very fiddly). I will put all the R code into our "MAMS" package.

References

- Dunnett, C.W. (1984) Selection of the best treatment in comparison to a control with an application to a medical trial. In *Design of Experiments:* Ranking and Selection
- Magirr, D., et al. (2012) A generalized Dunnett test for multi-arm, multi-stage clinical studies with treatment selection. Biometrika 99, 494-501.
- Follmann, D.A., et al. (1994). Monitoring pairwise comparisons in multi-armed clinical trials. Biometrics 50, 325-336.
- Stallard, N. & Todd, S. (2003) Sequential designs for phase III clinical trials incorporating treatment selection. Stats in Med 22 686-703.
- Jennison, C. and Turnbull, B.W. (2006) Adaptive and nonadaptive group sequential tests. Biometrika 93 1-21.
- Bauer, P. & Köhne, K. (1994) Evaluation of experiments with adaptive interim analyses. *Biometrics* 50 1029-1041.
- Proschan, M. & Hunsberger, S. (1995) Designed extension of studies based on conditional power. Biometrics 51 1315-1324.

References

- Marcus, R., et al. (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63 655-660.
- Burman, C-F. & Sonesson, C. Are flexible designs sound? Biometrics 62 664-683.
- Posch, M., et al. (2005). Testing and Estimation in Flexible Group Sequential Designs with Adaptive Treatment Selection. Statistics in Medicine 24, 3697-3714.
- Bauer, P. and Kieser, M. (1999) Combining Different Phases in the Development of Medical Treatments Within a Single Trial. Statistics in Medicine 18, 1833-1848.
- Koenig, F., et al. (2008) Adaptive Dunnett Tests for Treatment Selection. Statistics in Medicine 27, 1612-1625.
- Magirr, D., Stallard, N. & Jaki, T. (2013) Flexible sequential designs for multi-arm clinical trials. Submitted.