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Differences Vienna- Hannover I
- Weather, music, food, ...

- sCI a MUST - see recent paper Phillips (2013):
1 Because interpreting by decision makers, not statisticians
2 Focusing on appropriate choice of effect size and their sCI
3 (Adjusted) p-values are inappropriate from this perspective

(although widely used)
4 I.e. up to now: less focus on stepwise approaches or adaptive

designs or gatekeeping (although 1991 ff papers)

- Nearly no FDR (just genome-wide Williams trend test using
Benjamini-CI in package Isogene)

- Increasing power by:
1 restricting the alternative
2 taking the correlation(s) into account
3 resulting in a general non-product-moment structure
4 But after Ioannidis (2005) (Why most published research findings

are false): conservative is smart not painful- at least to some
extend
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Differences Vienna- Hannover II

- Using R only, i.e. in papers and packages

- Gaussian distribution only a possibility, focus on GLMM

- Less focus on weighted procedures (choice of weights?)

- Not just RCT, but also genetics, toxicology, molecular biology

- Triple: superiority, non-inferiority, equivalence (by means of sCI)

- Non-parametric as well (co-working with Goettingen group in a
joint DfG-project)

- Robustness, e.g. variance heterogeneity
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The Problem I
- Charlies pioneering many21-procedure (Dunnett, 1955) is

belonging to the most cited statistical papers. WebSci (04/2013):
4363 times

- Relevant up to now, e.g. for comparison of diversities in
metagenomics (Pallmann et al., 2012)

- However, limited to Gaussian errors with homogeneous
variances- and so in related software (SAS PROC MIXED,
SPSS,...)

- But different endpoints occur commonly, e.g.:
i Proportions (Schaarschmidt and Biesheuvel, 2008)
ii Scores (count) data (Jaki et al., 2013)
iii Poly-3 estimates, i.e. mortality-adjusted tumor rates in

carcinogenicity studies (Schaarschmidt et al., 2007)
iv Skewed-distributed endpoints:

a) non-parametric (Konietschke and Hothorn, 2012),
b) log-normal (Schaarschmidt, 2013),

v (Censored) time-to-event data (Herberich and Hothorn, 2012)
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The Problem II
- Even when Gaussian errors can be assumed, a diversity of

problems exist:

i Inference for µi/µC instead of µi − µC (Dilba et al., 2004, 2007)
ii Correcting for heteroscedasticity in unbalanced designs (Hasler

and Hothorn, 2008)
iii Multiple endpoints:

a) for superiority (Hasler and Hothorn, 2011),
b) for non-inferiority (Hasler and Hothorn, 2013)

iv Two-way layouts: claiming for or against qualitative interactions
(Kitsche and Hothorn, 2013)

v Mixed models (Kruppa, 2009)
vi Using different contrasts, e.g. order restricted (Bretz, 2006),

change-point (Hirotsu et al., 2011), vs. grand-mean (Djira and
Hothorn, 2009)

vii Replacing global ANOVA F-test by MCT vs. grand mean
(Konietschke et al., 2013)

- Focusing on simultaneous confidence intervals (sCI)(instead of
adj. p-values): interpretability (single step procedures so far)
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MCP’s formulated as MCT’s I

- MCT: multiple contrast test
- A contrast is a suitable linear combination of estimators, e.g.

means:
k∑

i=0

ci x̄i

- Here i = 0...k , focusing on comparisons vs. control
- A contrast test is standardized

tContrast =
k∑

i=0

ci x̄i/S

√√√√ k∑
i

c2
i /ni

where
∑k

i=0 ci = 0 guaranteed a tdf ,1−α distributed level-α-test
- To achieve compatible sCI

∑
sign+(ci) = 1,

∑
sign−(ci) = 1

- Notice, arbitrary ci can be used in resampling tests- one reason for their popularity?

6 / 37



MCP’s formulated as MCT’s II

- A multiple contrast test is defined as maximum test:

tMCT = max(t1, ..., tq)

which follows jointly (t1, . . . , tq)′ a q-variate t- distribution with
degree of freedom df and correlation matrix R (R = f (cij ,ni))

- R-library(mvtnorm): (non)-central multivariate t-distribution for any
correlation matrix (Mi et al., 2009; Genz et al., 2012) r-,d-,q-,p-

- One-sided lower simultaneous confidence limits:
[
∑k

i=0 ci x̄i − S · tq,df ,R,1−sided ,1−α

√∑k
i c2

i /ni ]
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MCP’s formulated as MCT’s III

- The choice of a particular contrast matrix defines the MCT
- Known examples (balanced design k=2 .... just to keep it simple)

Many-to-one, one-sided (Dunnett, 1955)
ci C T1 T2

ca -1 0 1
cb -1 1 0

All pairs comparisons (Tukey1953)

ci C T1 T2

ca -1 0 1
cb -1 1 0
cc 0 -1 1
cd 1 -1 0
ce -1 1 0
cf 0 1 -1

Change-point comparisons (Hirotsu et al.,
2011)

ci C D1 D2

ca -1 0.5 0.5
cb -0.5 -0.5 1

Williams-type procedure (Bretz, 2006)

ci C D1 D2

ca -1 0 1
cb -1 1/2 1/2
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One- vs two-sided hypothesis I

- Simply using 2 different contrast matrices
- E.g. many21 One-sided:

ci C T1 T2
ca -1 0 1
cb -1 1 0

Two-sided:

ci C T1 T2
ca -1 0 1
cb -1 1 0
cc 1 0 -1
cd 1 -1 0

- Just two different related correlation matrices
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sCI for ratios of µi I

- Aim: simultaneous confidence intervals for µi/µ0

ωi = ciµ/diµ

- ci and di are the i th row vector of C and D for numerator and
denominator

- E.g. for Dunnett-type contrasts

C =

 0 0 0 1
0 0 1 0
0 1 0 0



D =

 1 0 0 0
1 0 0 0
1 0 0 0

 .
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sCI for ratios of µi II
- The simultaneous Fieller-type confidence intervals for ωi are the

solutions of the inequalities

T 2(ωi) =
L2(ωi)

S2
L(ωi )

≤ t2
q,ν,R(ω),1−α,

with the numerator

L(ωi) =
∑

ciY i − diωiY 0,

Notice, Sasabuchi’s trick of a linear form
- tq,ν,R(ω i ),1−α is a central q-variate t-distribution with ν degrees of

freedom and correlation matrix R(ωi) = [ρij ], where ρii ′ depend on
chi ,ni and on unknown ratios ωi : plug-in ML-estimators (Dilba
et al., 2006) Trick no. 2

- The mratios R package (Dilba et al., 2007; Djira et al., 2012) can
be used to make inferences about ratios of parameters in mixed
models
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sCI when variance heterogeneity occurs I

- Variance heterogeneity is quite common, i.e. εij ∼ N(0, σ2
i ).

- Standard MCP do not control FWER, particularly for unbalanced
ni

- Modified test statistic T 2∗(ωi) = L(ωi)
2/S2∗

L(ωi )
, where

S2∗
L(ωi ) =

ω2
i

n0
S2

0 +

q∑
h=q+1−i

nh

ñ2
i

S2
h .

- T ∗(ωi) has an approximate t-distribution with approximate
Satterthwaite-type ν
Under variance heterogeneity: both ν and R(ω) depend on the
unknown ratios ωi and the unknown variances σ2

i

- Plug-in modification: sci.ratioVH function in the R package mratios
(Hasler and Hothorn, 2008)
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Non-parametric procedure I

- Commonly: HF
0 : F0 = ... = Fk formulated in terms of the

distribution functions against simple tree HF
1 : F0 < Fi

- But the distribution of the rank means is unknown under H1,
neither sCI are available for a general unbalanced design, nor
power can be estimated

- AND: tied or ordered categorical data, such as severity counts,
should be analyzed as well

- AND: variance heterogeneity occurs frequently; therefore a
Behrens-Fisher (BF) version is needed
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Non-parametric procedure II

- Using relative effect size (Brunner and Munzel, 2000), (Ryu and
Agresti, 2008):

p01 =

∫
F0dF1 = P(X01 < X11) + 0.5P(X01 = X11).

- p01 is a win probability in the sense of Hayter (2013)
- p01 can be interpreted for trials with subjects Browne (2010)

- sCI: Konietschke (2011) Let R(0s)
sj denote the rank of Xsj among

all n0 + ns observations within the samples 0 and s

- The rank means can be used to estimate p0s

p̂0s =
1
n0

(
R

(0s)
s· −

ns + 1
2

)
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Non-parametric procedure III
- Asymptotically

√
N(p̂1 − p1, . . . , p̂q − pq)′ follows a central

multivariate normal distribution with expectation 0 and covariance
matrix VN (Konietschke, 2011)

- Related approximate (1− α)100% one-sided lower simultaneous
confidence limits are:[

p̂` − tq,ν,R,1−α
√

S`;
]
, ` = 1, . . . ,q, (1)

- E.g. relative Shirley-type effects for order restriction (Shirley, 1977)

p1 = p0k

p2 =
nk−1

nk−1 + nk
p0(k−1) +

nk

nk−1 + nk
p0k

...
pq =

n1

n1 + . . .+ nk
p01 + . . .+

nk

n1 + . . .+ nk
p0k
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Non-parametric procedure IV
- Shirley-type test for graded histopathological findings using R

package nparcomp
Ordered categorical findings of non-neoplastic lesions in the
P-Cresidine carcinogenicity study: hyperplasia in parotid gland
library(nparcomp)
nparcomp(Score~Group, data=parotid, asy.method = "probit",type="Williams", plot.simci = TRUE, info = TRUE)

●
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[

[
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sCI for proportions I

- Three approaches
1 Wald-type (Hothorn et al., 2008)
2 Add1- adjusted (Schaarschmidt and Biesheuvel, 2008)
3 Profile likelihood (Gerhard, 2010)

- For sample sizes of ni = 50...10 there is no hope for valid
(1− α)100% Wald intervals. Therefore we need confidence
intervals with coverage probability approximately 95% also for
smaller samples

- And, for almost all proportions a one-sided alternative for an
increase/decrease is appropriate

- As effect size the difference of proportions is common
(alternatively RR, OR)
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sCI for proportions II

- One-sided, lower (1− α)100% Wald-type confidence limits for the
difference of the proportions of treatments against C: I∑

i=1

cipi − zq,R,1−α

√√√√ I∑
i=1

c2
i V̂ (pi) ;


with V̂ (pi) = pi (1− pi) /ni and zq,R,1−α denoting the (1− α)
quantile of the q-variate normal distribution

- R depends not only on the known contrast coefficients cim and
sample sizes ni but also on the unknown πi and V (pi) where
the plug-in of the ML-estimators π̂i and V̂ (πi) works well.
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sCI for proportions III
- Agresti and Coull (1998) showed that adding a total of four

pseudo-observations to the observed successes and failures
yields approximate confidence intervals for one binomial
proportion with good small sample performance

- One-sided limits were investigated by Cai (2005) in the case of a
single binomial proportion I∑

i=1

ci p̃i − zq,R,1−α

√√√√ I∑
i=1

c2
i Ṽ (p̃i)


- Choice of simultaneous confidence limits

Notation p̃i Ṽ (pi )
Wald Yi/ni pi (1− pi ) /ni
add-1 (Yi + 0.5) / (ni + 1) p̃i (1− p̃i ) / (ni + 1)
add-2 (Yi + 1) / (ni + 2) p̃i (1− p̃i ) / (ni + 2)
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sCI for proportions IV
- Simulation study (Schaarschmidt et al., 2008): use add1 approx.

one-sided lower limits when ni not too small
- Example:Simultaneous confidence limits for tubular epithelia

hyaline droplet degeneration in male rats by means of MCPAN.
Control Dose50 Dose75 Dose150

with degeneration 2 6 4 13
n 32 27 32 21

library(MCPAN)
data(liarozole)
plot(binomRDci(tab, type="Dunnett", alternative="greater", method="ADD1"))

●

●

●

Proportion of patients
 with marked improvement

Dose150 − Placebo

Dose75 − Placebo

Dose50 − Placebo

−0.1 0.0 0.1 0.2 0.3
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sCI for time-to-event data I
- Williams-type proc. comparing survival functions: i) Cox proport.

hazards model or ii) the frailty Cox model to allow a joint analysis
over sex and strains (Herberich and Hothorn, 2012)

- Example: Mortality in NTP-TR120 carcinogenicity
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- Effect size: Hazard rate. Using Williams-type sCI

Comparison Estimated HR sim. 97.5%-Interval
C vs. D2 3.83 [0.82,∞)
C vs. (D1, D2) 3.18 [0.71,∞)
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A Dunnett-type approach for multiple endpoints I

- In RCT with several primary correlated endpoints and a multi-arm
design, multiplicity adjustment should take both the endpoints and
the treatment comparisons into account, i.e. global control of
FWER

- Extension of the Dunnett procedure (Dunnett, 1955) for k multiple
endpoints and q comparisons

{Xipj : p = 1, . . . , k} ∼ ⊥Nk (µi ,Σ) (i = 0, . . . ,q, j = 1, . . . ,ni).

- I.e. unknown covariance matrices Σl ∈ Rk×k with possibly
different variances and covariances for the endpoints, but the
same covariance matrices for all treatments

- Testing the hypotheses

H(ip)
0 : ηip ≤ δp
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A Dunnett-type approach for multiple endpoints II
- This is a union-intersection-test because the overall null

hypothesis of interest can be expressed as an intersection of the
local null hypotheses, i.e.,

H0 =

q⋂
i=1


k⋂

p=1

H(ip)
0

 .

- This means that the overall null hypothesis H0 is rejected if and
only if a local null hypothesis H(ip)

0 is rejected for at least one
treatment for at least one endpoint.

- The test of the above hypotheses based on (now for the
difference!)

Tip =
X̄ip − X̄0p − δp

Sp

√
1
ni

+ 1
n0

(i = 1, . . . ,q, p = 1, . . . , k).
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A Dunnett-type approach for multiple endpoints III

- The distribution of the univariate T i under H(i)
0 is simply a

k -variate t-distribution with ν degrees of freedom and the
correlation matrix R, i.e.,

T i ∼ tk ,ν,R,1−α.

- Consequently, under H0, the vector of all test statistics,

T = (T ′1, . . . ,T
′
q)′ = (T11, . . . ,Tip, . . . ,Tqk )′,

follows approximately a qk -variate t-distribution with ν degrees of
freedom and a correlation matrix denoted by R̃, i.e.,

T
appr .∼ tqk ,ν,R̃,1−α
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A Dunnett-type approach for multiple endpoints IV

The correlation matrix R̃ is given by

R̃ = (R ii ′)i,ii ′ =


R11 R12 . . . R1q
R12 R22 . . . R2q
...

...
. . .

...
R1q R2q . . . Rqq

 .

The submatrices R ii ′ = (ρii ′,pp′) describe the correlations between
the i th and the i ′th comparison for all endpoints. Their elements
are

ρii ′,pp′ =


ρpp′ , i = i ′

ρpp′
1√(

n0
ni
+1
)(

n0
ni′

+1
) , i 6= i ′
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A Dunnett-type approach for multiple endpoints V

- sCI The lower limits of the approximate (1− α)100% sCIs for
(η11, . . . , ηqk )′ are given by

η̂low
ip = X̄ip − X̄0p − t

qk ,ν, ˆ̃R,1−α
Sp

√
1
ni

+
1
n0

- The R package SimComp was developed
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Some user-defined contrasts I
I: Concept: claim-wise error rate Phillips (2013)
II: Regulatory toxicology

- US-NTP recommends the use of Dunnett and Williams procedure.
Which one really? Take both! (Jaki and Hothorn, 2013)

Dun

cqi NC D1 D2 D3
ca -1 0 0 1
cb -1 0 1 0
cc -1 1 0 0

Wil

cqi NC D1 D2 D3
ca -1 0 0 1
cb -1 0 1/2 1/2
cc -1 1/3 1/3 1/3

UWil

cqi NC D1 D2 D3
ca -1 0 0 1
cb -1 0 1/2 1/2
cc -1 1/3 1/3 1/3
cd -1 0 1 0
ce -1 1/2 1/2 0
cf -1 1 0 0
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Some user-defined contrasts II
- Blood urea nitrogen content after 13 weeks repeated

administration of sodium dichromate dihydrate on male rats
(NTP2012)

Comparison Dun Wil DuWi UWil
1000− 0 0.80 0.60 0.80 0.80
500− 0 6.8e-07 - 8.1e-07 8.4e-07
250− 0 0.110 - 0.11 0.12
125− 0 0.017 - 0.018 0.020
62.5− 0 0.045 - 0.047 0.051
(1000 + 500)/2− 0 - 0.0013 0.0030 0.0033
(1000 + 500 + 250/3− 0 - 0.0029 0.0057 0.0063
(1000 + 500 + 250 + 125)/4− 0 - 0.0021 0.0037 0.0042
(1000 + 500 + 250 + 125 + 62.5)/5− 0 - 0.0022 0.0039 0.0043
(500 + 250)/2− 0 - - - < 0.001
(500 + 250 + 125)/3− 0 - - - < 0.001
(500 + 250 + 125 + 62.5)/4− 0 - - - < 0.001
(250 + 125)/2− 0 - - - 0.023
(250 + 125 + 62.5)/3− 0 - - - 0.015
(125 + 62.5)/2− 0 - - - 0.015
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Some user-defined contrasts III
III: Genetic association studies
Association between a di-allelic marker and a disease can be
presented in a 2× 3 contingency table, where aa is the high risk
candidate allele and AA is any of the other alleles

aa aA AA Total
Cases raa raA rAA r
Controls saa saA sAA s
Total naa naA nAA n

The global null hypothesis for the unknown proportions
πj = E(rj/nj), j ∈ {aa,aA,AA}

H0 : πaa = πaA = πAA

can be compared to either a global heterogeneity alternative

Hheterogeneity
1 : πj 6= πj ′ , j 6= j ′ ∈ (aa,aA,AA)

e.g. by Pearson χ2 test
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Some user-defined contrasts IV
or to a global order restricted alternative

Hordered
1 : πaa ≤ πaA ≤ πAA

Hordered
1 can be decomposed in three elementary alternatives

Hadditiv
1 : πaa < πaA < πAA

Hdominant
1 : πaa < πaA = πAA

H recessive
1 : πaa = πaA < πAA
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Some user-defined contrasts V

1 The quadratic form of the global heterogeneity test can be replaced by
MCT against grand mean (Konietschke et al., 2013)

πaa πaA πAA
any wild type vs. risk -1 0.5 0.5
heterocygotes vs. homocyg. 0.5 -1 0.5
any risk alle vs. homocyg. wild type 0.5 0.5 -1

2 For the order restricted alternatives the contrast coefficients cjq are:

πaa πaA πAA
additive -1 0 1
dominant -1 0.5 0.5
recessive -0.5 -0.5 1

3 Together:
πaa πaA πAA

additive mode -1 0 1
dominant mode= any homocygotes vs GM -1 0.5 0.5
recessive mode=risk homocygotes vs GM -0.5 -0.5 1
over-dominance mode =heterocyg. vs homocyg 0.5 -1 0.5
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Replacing ANOVA F-test by MCT vs. grand mean I

- Analyzing one-way layouts by F-test or Kruskal-Wallis test is
common

- Quadratic F-test can be replaced by max-test of linear contrasts
vs. grand mean Konietschke et al. (2013)

- Power:
i) similar for least favorable configuration,
ii) larger or smaller for any alternatives

- sCI available
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R libraries - LUH and friends I

- multcomp

- mvtnorm

- mratio

- MCPAN

- SimComp

- goric
- mcprofile
- AND: pairwiseCI, BSagri, simboot, PropCIs, binMto
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Take Home Message I

- (Single step) sCI are available for most endpoints, designs and
contrast formulations

- Related R packages are available: UseR!

- (Not shown: power for the compatible tests can be calculated
under some assumptions)

- I.e. unified analysis of all end-points in a trial/study is possible

- Alternative: hypothesis-restricted AIC-based model selection, e.g.
for MED estimation (Kuiper et al., 2013)

- Focus now: mixed model applications
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