Vienna Section ROES

User-defined contrasts within multiple contrast tests- case studies using R

Ludwig A. Hothorn

hothorn@biostat.uni-hannover.de

Institute of Biostatistics, Leibniz University Hannover, Germany

October 2013

Differences Vienna- Hannover I

- Weather, music, food, ...
- sCI a MUST see recent paper Phillips (2013):
 - Because interpreting by decision makers, not statisticians
 - Focusing on appropriate choice of effect size and their sCI
 - (Adjusted) p-values are inappropriate from this perspective (although widely used)
 - I.e. up to now: less focus on stepwise approaches or adaptive designs or gatekeeping (although 1991 ff papers)
- Nearly no FDR (just genome-wide Williams trend test using Benjamini-CI in package Isogene)
- Increasing power by:
 - restricting the alternative
 - taking the correlation(s) into account
 - resulting in a general non-product-moment structure
 - But after loannidis (2005) (Why most published research findings are false): conservative is smart not painful- at least to some extend

Differences Vienna- Hannover II

- Using R only, i.e. in papers and packages
- Gaussian distribution only a possibility, focus on GLMM
- Less focus on weighted procedures (choice of weights?)
- Not just RCT, but also genetics, toxicology, molecular biology
- Triple: superiority, non-inferiority, equivalence (by means of sCI)
- Non-parametric as well (co-working with Goettingen group in a joint DfG-project)
- Robustness, e.g. variance heterogeneity

The Problem I

- Charlies pioneering many21-procedure (Dunnett, 1955) is belonging to the most cited statistical papers. WebSci (04/2013): 4363 times
- Relevant up to now, e.g. for comparison of diversities in metagenomics (Pallmann et al., 2012)
- However, limited to Gaussian errors with homogeneous variances- and so in related software (SAS PROC MIXED, SPSS,...)
- But different endpoints occur commonly, e.g.:
 - i Proportions (Schaarschmidt and Biesheuvel, 2008)
 - ii Scores (count) data (Jaki et al., 2013)
 - iii Poly-3 estimates, i.e. mortality-adjusted tumor rates in carcinogenicity studies (Schaarschmidt et al., 2007)
 - iv Skewed-distributed endpoints:
 - a) non-parametric (Konietschke and Hothorn, 2012),
 - b) log-normal (Schaarschmidt, 2013),
 - v (Censored) time-to-event data (Herberich and Hothorn, 2012)

The Problem II

- Even when Gaussian errors can be assumed, a diversity of problems exist:
 - i Inference for μ_i/μ_C instead of $\mu_i \mu_C$ (Dilba et al., 2004, 2007)
 - ii Correcting for heteroscedasticity in unbalanced designs (Hasler and Hothorn, 2008)
 - iii Multiple endpoints:
 - a) for superiority (Hasler and Hothorn, 2011),
 - b) for non-inferiority (Hasler and Hothorn, 2013)
 - iv Two-way layouts: claiming for or against qualitative interactions (Kitsche and Hothorn, 2013)
 - Mixed models (Kruppa, 2009)
 - vi Using different contrasts, e.g. order restricted (Bretz, 2006), change-point (Hirotsu et al., 2011), vs. grand-mean (Djira and Hothorn, 2009)
 - vii Replacing global ANOVA F-test by MCT vs. grand mean (Konietschke et al., 2013)
- Focusing on simultaneous confidence intervals (sCl)(instead of adj. p-values): interpretability (single step procedures so far)

MCP's formulated as MCT's I

- MCT: multiple contrast test
- A contrast is a suitable linear combination of estimators, e.g. means:

$$\sum_{i=0}^k c_i \bar{x}$$

- Here i = 0...k, focusing on comparisons vs. control
- A contrast test is standardized

$$t_{Contrast} = \sum_{i=0}^k c_i ar{x}_i / S \sqrt{\sum_i^k c_i^2 / n_i}$$

where $\sum_{i=0}^{k} c_i = 0$ guaranteed a $t_{df,1-\alpha}$ distributed level- α -test

- To achieve compatible sCI $\sum sign^+(c_i) = 1, \sum sign^-(c_i) = 1$
 - Notice, arbitrary c_i can be used in resampling tests- one reason for their popularity?

MCP's formulated as MCT's II

A multiple contrast test is defined as maximum test:

$$t_{MCT} = max(t_1, ..., t_q)$$

which follows jointly $(t_1, \ldots, t_q)'$ a q-variate t- distribution with degree of freedom df and correlation matrix R $(R = f(c_{ij}, n_i))$

- R-library(mvtnorm): (non)-central multivariate t-distribution for any correlation matrix (Mi et al., 2009; Genz et al., 2012) r-,d-,q-,p-
- One-sided lower **simultaneous confidence limits**:

$$\left[\sum_{i=0}^{k} c_i \bar{x}_i - S \cdot t_{q,df,R,1-sided,1-\alpha} \sqrt{\sum_{i}^{k} c_i^2/n_i}\right]$$

MCP's formulated as MCT's III

- The choice of a particular contrast matrix defines the MCT
- Known examples (balanced design k=2 just to keep it simple)

Many-to-one, one-sided (Dunnett, 1955)

Ci	С	T_1	T_2
Ca	-1	0	1
c_b	-1	1	0

All pairs comparisons (Tukey1953)

C_i	С	T_1	T_2
Ca	-1	0	1
C_b	-1	1	0
c_c	0	-1	1
C_d	1	-1	0
c_e	-1	1	0
C _f	0	1	-1

Change-point comparisons (Hirotsu et al., 2011)

Williams-type procedure (Bretz, 2006)

$$\begin{array}{ccccc} c_i & C & D_1 & D_2 \\ \hline c_a & -1 & 0 & 1 \\ c_b & -1 & 1/2 & 1/2 \end{array}$$

One- vs two-sided hypothesis I

- Simply using 2 different contrast matrices
- E.g. many21 One-sided:

Two-sided:

$$egin{array}{ccccccc} c_i & C & T_1 & T_2 \\ \hline c_a & -1 & 0 & 1 \\ c_b & -1 & 1 & 0 \\ c_c & 1 & 0 & -1 \\ c_d & 1 & -1 & 0 \\ \hline \end{array}$$

- Just two different related correlation matrices

sCI for ratios of μ_i I

- **Aim**: simultaneous confidence intervals for μ_i/μ_0

$$\omega_i = \mathbf{c}_i \boldsymbol{\mu}/\mathbf{d}_i \boldsymbol{\mu}$$

- c_i and d_i are the ith row vector of C and D for numerator and denominator
- E.g. for Dunnett-type contrasts

$$\mathbf{C} = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

$$\mathbf{D} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right).$$

sCI for ratios of μ_i II

- The simultaneous Fieller-type confidence intervals for ω_i are the solutions of the inequalities

$$T^2(\omega_i) = \frac{L^2(\omega_i)}{S^2_{L(\omega_i)}} \le t^2_{q,\nu,R(\boldsymbol{\omega}),1-\alpha},$$

with the numerator

$$L(\omega_i) = \sum c_i \overline{Y}_i - d_i \omega_i \overline{Y}_0,$$

Notice, Sasabuchi's trick of a linear form

- $t_{q,\nu,R(\omega_i),1-\alpha}$ is a central q-variate t-distribution with ν degrees of freedom and correlation matrix $R(\omega_i) = [\rho_{ij}]$, where $\rho_{ii'}$ depend on c_{hi} , n_i and on unknown ratios ω_i : plug-in ML-estimators (Dilba et al., 2006) Trick no. 2
- The mratios R package (Dilba et al., 2007; Djira et al., 2012) can be used to make inferences about ratios of parameters in mixed models

sCI when variance heterogeneity occurs I

- Variance heterogeneity is quite common, i.e. $\varepsilon_{ij} \sim N(0, \sigma_i^2)$.
- Standard MCP do not control FWER, particularly for unbalanced n_i
- Modified test statistic $T^{2*}(\omega_i) = L(\omega_i)^2/S_{L(\omega_i)}^{2*}$, where

$$S^{2*}{}_{L(\omega_i)} = \frac{\omega_i^2}{n_0} S_0^2 + \sum_{h=q+1-i}^q \frac{n_h}{\widetilde{n}_i^2} S_h^2.$$

- $T^*(\omega_i)$ has an approximate t-distribution with approximate Satterthwaite-type ν Under variance heterogeneity: both ν and $R(\omega)$ depend on the unknown ratios ω_i and the unknown variances σ_i^2
- Plug-in modification: *sci.ratioVH* function in the R package *mratios* (Hasler and Hothorn, 2008)

Non-parametric procedure I

- Commonly: $H_0^F: F_0 = ... = F_k$ formulated in terms of the distribution functions against simple tree $H_1^F: F_0 < F_i$
- But the distribution of the rank means is unknown under H₁, neither sCI are available for a general unbalanced design, nor power can be estimated
- AND: tied or ordered categorical data, such as severity counts, should be analyzed as well
- AND: variance heterogeneity occurs frequently; therefore a Behrens-Fisher (BF) version is needed

Non-parametric procedure II

 Using relative effect size (Brunner and Munzel, 2000), (Ryu and Agresti, 2008):

$$p_{01} = \int F_0 dF_1 = P(X_{01} < X_{11}) + 0.5P(X_{01} = X_{11}).$$

- p_{01} is a win probability in the sense of Hayter (2013)
- p_{01} can be interpreted for trials with subjects Browne (2010)
- **sCI:** Konietschke (2011) Let $R_{sj}^{(0s)}$ denote the rank of X_{sj} among all $n_0 + n_s$ observations within the samples 0 and s
- The rank means can be used to estimate p_{0s}

$$\widehat{p}_{0s} = \frac{1}{n_0} \left(\overline{R}_{s.}^{(0s)} - \frac{n_s + 1}{2} \right)$$

- Non-parametric procedure III
 Asymptotically $\sqrt{N}(\hat{p}_1 p_1, \dots, \hat{p}_q p_q)'$ follows a central multivariate normal distribution with expectation **0** and covariance matrix \mathbf{V}_N (Konietschke, 2011)
 - Related approximate $(1 \alpha)100\%$ one-sided lower simultaneous confidence limits are:

$$\left[\widehat{\rho}_{\ell} - t_{q,\nu,\mathbf{R},1-\alpha}\sqrt{S_{\ell}}; \right], \ \ell = 1,\dots,q,$$
(1)

E.g. relative Shirley-type effects for order restriction (Shirley, 1977)

$$p_{1} = p_{0k}$$

$$p_{2} = \frac{n_{k-1}}{n_{k-1} + n_{k}} p_{0(k-1)} + \frac{n_{k}}{n_{k-1} + n_{k}} p_{0k}$$

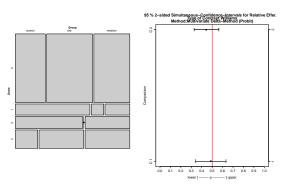
$$\vdots$$

$$p_{q} = \frac{n_{1}}{n_{1} + \dots + n_{k}} p_{01} + \dots + \frac{n_{k}}{n_{1} + \dots + n_{k}} p_{0k}$$

Non-parametric procedure IV

 Shirley-type test for graded histopathological findings using R package nparcomp
 Ordered categorical findings of non-neoplastic lesions in the P-Cresidine carcinogenicity study: hyperplasia in parotid gland

```
library(nparcomp)
nparcomp(Score~Group, data=parotid, asy.method = "probit",type="Willi
```



sCI for proportions I

- Three approaches
 - Wald-type (Hothorn et al., 2008)
 - Add1- adjusted (Schaarschmidt and Biesheuvel, 2008)
 - Profile likelihood (Gerhard, 2010)
- For sample sizes of $n_i = 50...10$ there is no hope for valid $(1-\alpha)100\%$ Wald intervals. Therefore we need confidence intervals with coverage probability approximately 95% also for smaller samples
- And, for almost all proportions a one-sided alternative for an increase/decrease is appropriate
- As effect size the difference of proportions is common (alternatively RR, OR)

sCI for proportions II

- One-sided, lower $(1-\alpha)100\%$ Wald-type confidence limits for the difference of the proportions of treatments against C:

$$\left[\sum_{i=1}^{I} c_{i} p_{i} - z_{q,R,1-\alpha} \sqrt{\sum_{i=1}^{I} c_{i}^{2} \hat{V}(p_{i})};\right]$$

with $\hat{V}(p_i) = p_i (1 - p_i) / n_i$ and $z_{q,R,1-\alpha}$ denoting the $(1 - \alpha)$ quantile of the q-variate normal distribution

- R depends not only on the known contrast coefficients c_{im} and sample sizes n_i but also on the unknown π_i and $V(p_i)$ where the plug-in of the ML-estimators $\hat{\pi}_i$ and $\hat{V}(\pi_i)$ works well.

sCI for proportions III

- Agresti and Coull (1998) showed that adding a total of four pseudo-observations to the observed successes and failures yields approximate confidence intervals for one binomial proportion with good small sample performance
- One-sided limits were investigated by Cai (2005) in the case of a single binomial proportion

$$\left[\sum_{i=1}^{I} c_{i} \tilde{p}_{i} - z_{q,R,1-\alpha} \sqrt{\sum_{i=1}^{I} c_{i}^{2} \tilde{V}\left(\tilde{p}_{i}\right)}\right]$$

- Choice of simultaneous confidence limits

Notation	$ ilde{p}_i$	$\tilde{V}(p_i)$
Wald	Y_i/n_i	$p_i \left(1 - p_i\right)/n_i$
add-1	$(Y_i + 0.5) / (n_i + 1)$	$\tilde{p}_i \left(1 - \tilde{p}_i\right) / \left(n_i + 1\right)$
add-2	$(Y_i + 1) / (n_i + 2)$	$ ilde{p}_i \left(1 - ilde{p}_i ight) / \left(n_i + 2 ight)$

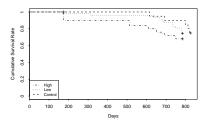
- sCI for proportions IVSimulation study (Schaarschmidt et al., 2008): use add1 approx. one-sided lower limits when n_i not too small
 - Example:Simultaneous confidence limits for tubular epithelia hyaline droplet degeneration in male rats by means of MCPAN.

	Control	Dose50	Dose75	Dose150
with degeneration	2	6	4	13
n	32	27	32	21

```
library (MCPAN)
data(liarozole)
plot(binomRDci(tab, type="Dunnett", alternative="greater", method="ADD1"))
```


sCI for time-to-event data I

- Williams-type proc. comparing survival functions: i) Cox proport. hazards model or ii) the frailty Cox model to allow a joint analysis over sex and strains (Herberich and Hothorn, 2012)
- Example: Mortality in NTP-TR120 carcinogenicity



Effect size: Hazard rate. Using Williams-type sCI

Comparison	Estimated HR	sim. 97.5%-Interval
C vs. D2	3.83	[0.82, ∞)
C vs. (D1, D2)	3.18	$[0.71, \infty)$

A Dunnett-type approach for multiple endpoints I

- In RCT with several primary correlated endpoints and a multi-arm design, multiplicity adjustment should take both the endpoints and the treatment comparisons into account, i.e. global control of FWER
- Extension of the Dunnett procedure (Dunnett, 1955) for k multiple endpoints and q comparisons

$$\{X_{ipj}: p=1,\ldots,k\} \sim \bot N_k(\mu_i, \Sigma) \quad (i=0,\ldots,q, \ j=1,\ldots,n_i).$$

- I.e. unknown covariance matrices $\Sigma_l \in \mathbb{R}^{k \times k}$ with possibly different variances and covariances for the endpoints, but the same covariance matrices for all treatments
- Testing the hypotheses

$$H_0^{(ip)}: \eta_{ip} \leq \delta_p$$

A Dunnett-type approach for multiple endpoints II

 This is a union-intersection-test because the overall null hypothesis of interest can be expressed as an intersection of the local null hypotheses, i.e.,

$$H_0 = \bigcap_{i=1}^q \left\{ \bigcap_{p=1}^k H_0^{(ip)} \right\}.$$

- This means that the overall null hypothesis H_0 is rejected if and only if a local null hypothesis $H_0^{(ip)}$ is rejected for at least one treatment for at least one endpoint.
- The test of the above hypotheses based on (now for the difference!)

$$T_{ip} = rac{ar{X}_{ip} - ar{X}_{0p} - \delta_p}{S_p \sqrt{rac{1}{n_i} + rac{1}{n_0}}} \quad (i = 1, \dots, q, \ p = 1, \dots, k).$$

A Dunnett-type approach for multiple endpoints III

- The distribution of the univariate T_i under $H_0^{(i)}$ is simply a k-variate t-distribution with ν degrees of freedom and the correlation matrix R, i.e.,

$$T_i \sim t_{k,\nu,R,1-\alpha}$$
.

- Consequently, under H_0 , the vector of **all** test statistics,

$$T = (T'_1, \ldots, T'_q)' = (T_{11}, \ldots, T_{ip}, \ldots, T_{qk})',$$

follows approximately a qk-variate t-distribution with ν degrees of freedom and a correlation matrix denoted by $\tilde{\mathbf{R}}$, i.e.,

$$T \stackrel{appr.}{\sim} t_{qk,\nu,\tilde{R},1-\alpha}$$

A Dunnett-type approach for multiple endpoints IV

The correlation matrix $\tilde{\mathbf{R}}$ is given by

$$\tilde{\mathbf{R}} = (\mathbf{R}_{ii'})_{i,ii'} = \left(\begin{array}{cccc} \mathbf{R}_{11} & \mathbf{R}_{12} & \dots & \mathbf{R}_{1q} \\ \mathbf{R}_{12} & \mathbf{R}_{22} & \dots & \mathbf{R}_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{R}_{1q} & \mathbf{R}_{2q} & \dots & \mathbf{R}_{qq} \end{array} \right).$$

The submatrices $\mathbf{R}_{ii'} = (\rho_{ii',pp'})$ describe the correlations between the *i*th and the *i*'th comparison for all endpoints. Their elements are

$$ho_{ii',
ho
ho'} = \left\{egin{array}{ll}
ho_{
ho
ho'}, & i=i' \
ho_{
ho
ho'} rac{1}{\sqrt{\left(rac{n_0}{n_i}+1
ight)\left(rac{n_0}{n_{i'}}+1
ight)}}, & i
eq i' \end{array}
ight.$$

A Dunnett-type approach for multiple endpoints V

- **sCI** The lower limits of the approximate $(1 - \alpha)100\%$ sCIs for $(\eta_{11}, \dots, \eta_{qk})'$ are given by

$$\hat{\eta}_{ip}^{low} = \bar{X}_{ip} - \bar{X}_{0p} - t_{qk,\nu,\hat{\bar{R}},1-\alpha} S_p \sqrt{\frac{1}{n_i} + \frac{1}{n_0}}$$

- The R package SimComp was developed

Some user-defined contrasts I

I: Concept: claim-wise error rate Phillips (2013)

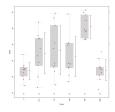
II: Regulatory toxicology

- US-NTP recommends the use of Dunnett and Williams procedure. Which one really? Take both! (Jaki and Hothorn, 2013)

Dun					Wil					c _{qi}	NC	D_1	D_2	D_3
C _{qi} C _a C _b C _c	-1 -1 -1	D ₁ 0 0 1	D ₂ 0 1 0	D ₃ 1 0 0	C _{qi} C _a C _b C _c	NC -1 -1 -1	D ₁ 0 0 1/3	D ₂ 0 1/2 1/3	D ₃ 1 1/2 1/3	Ca - Cb Cc Cd Ce	-1 -1 -1 -1	0 0 1/3 0 1/2	0 1/2 1/3 1 1/2	1 1/2 1/3 0
										C _f	-1	1	0	Ö

Some user-defined contrasts II

 Blood urea nitrogen content after 13 weeks repeated administration of sodium dichromate dihydrate on male rats (NTP2012)



Comparison	Dun	Wil	DuWi	UWil
1000 - 0	0.80	0.60	0.80	0.80
500 - 0	6.8e-07	-	8.1e-07	8.4e-07
250 - 0	0.110	-	0.11	0.12
125 — 0	0.017	-	0.018	0.020
62.5 - 0	0.045	-	0.047	0.051
(1000 + 500)/2 - 0	-	0.0013	0.0030	0.0033
(1000 + 500 + 250/3 - 0)	-	0.0029	0.0057	0.0063
(1000 + 500 + 250 + 125)/4 - 0	-	0.0021	0.0037	0.0042
(1000 + 500 + 250 + 125 + 62.5)/5 - 0	-	0.0022	0.0039	0.0043
(500 + 250)/2 - 0	-	-	-	< 0.001
(500 + 250 + 125)/3 - 0	-	-	-	< 0.001
(500 + 250 + 125 + 62.5)/4 - 0	-	-	-	< 0.001
(250 + 125)/2 - 0	-	-	-	0.023
(250 + 125 + 62.5)/3 - 0	-	-	-	0.015
(125 + 62.5)/2 - 0	-	- 400		_ 0.015_

Some user-defined contrasts III

III: Genetic association studies

Association between a di-allelic marker and a disease can be presented in a 2×3 contingency table, where aa is the high risk candidate allele and AA is any of the other alleles

	aa	aA	AA	Total
Cases	r _{aa}	r _{aA}	r_{AA}	r
Controls	Saa	s_{aA}	S_{AA}	S
Total	n _{aa}	n _{aA}	n_{AA}	n

The global null hypothesis for the unknown proportions $\pi_j = E(r_j/n_j), j \in \{aa, aA, AA\}$

$$H_0$$
: $\pi_{aa} = \pi_{aA} = \pi_{AA}$

can be compared to either a global heterogeneity alternative

$$H_1^{heterogeneity}: \pi_j
eq \pi_{j'}, j
eq j' \in (aa, aA, AA)$$

e.g. by Pearson χ^2 test

Some user-defined contrasts IV

or to a global order restricted alternative

$$H_1^{ordered}: \pi_{aa} \leq \pi_{aA} \leq \pi_{AA}$$

 $H_1^{ordered}$ can be decomposed in three elementary alternatives

$$H_1^{additiv}:\pi_{aa}<\pi_{aA}<\pi_{AA}$$

$$H_1^{dominant}: \pi_{aa} < \pi_{aA} = \pi_{AA}$$

$$H_1^{recessive}: \pi_{aa} = \pi_{aA} < \pi_{AA}$$

Some user-defined contrasts V

The quadratic form of the global heterogeneity test can be replaced by MCT against grand mean (Konietschke et al., 2013)

	π_{aa}	π_{aA}	π_{AA}
any wild type vs. risk	-1	0.5	0.5
heterocygotes vs. homocyg.	0.5	-1	0.5
any risk alle vs. homocyg. wild type	0.5	0.5	-1

② For the order restricted alternatives the contrast coefficients c_{jq} are:

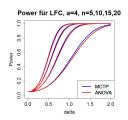
	π_{aa}	π_{aA}	π_{AA}
additive	-1	0	1
dominant	-1	0.5	0.5
recessive	-0.5	-0.5	1

Together:

	π aa	π_{aA}	π_{AA}	
additive mode	-1	0	1	
dominant mode= any homocygotes vs GM	-1	0.5	0.5	
recessive mode=risk homocygotes vs GM	-0.5	-0.5	1	
over-dominance mode =heterocyg. vs homocyg	0.5	-1	0.5	

Replacing ANOVA F-test by MCT vs. grand mean I

- Analyzing one-way layouts by F-test or Kruskal-Wallis test is common
- Quadratic F-test can be replaced by max-test of linear contrasts
 vs. grand mean Konietschke et al. (2013)



- Power:
 - i) similar for least favorable configuration,
 - ii) larger or smaller for any alternatives
- sCI available

R libraries - LUH and friends I

- multcomp
- mvtnorm
- mratio
- MCPAN
- SimComp
- goric
- mcprofile
- AND: pairwiseCI, BSagri, simboot, PropCIs, binMto

Take Home Message I

- (Single step) sCl are available for most endpoints, designs and contrast formulations
- Related R packages are available: UseR!
- (Not shown: power for the compatible tests can be calculated under some assumptions)
- I.e. unified analysis of all end-points in a trial/study is possible
- Alternative: hypothesis-restricted AIC-based model selection, e.g. for MED estimation (Kuiper et al., 2013)
- Focus now: mixed model applications

References I

- Agresti, A. and Coull, B. A. (1998). Approximate is better than ëxactfor interval estimation of binomial proportions. *American Statistician*, 52(2):119–126.
- Bretz, F. (2006). An extension of the williams trend test to general unbalanced linear models. *Computational Statistics & Data Analysis*, 50(7):1735–1748.
- Browne, R. H. (2010). The t-test p value and its relationship to the effect size and p(x > y). American Statistician, 64(1):30-33.
- Brunner, E. and Munzel, U. (2000). The nonparametric behrens-fisher problem: Asymptotic theory and a small-sample approximation. *Biometrical Journal*, 42(1):17–25.
- Cai, T. T. (2005). One-sided confidence intervals in discrete distributions. Journal Of Statistical Planning And Inference, 131(1):63–88.
- Dilba, G., Bretz, E., Guiard, V., and Hothorn, L. A. (2004). Simultaneous confidence intervals for ratios with applications to the comparison of several treatments with a control. *Methods Of Information In Medicine*, 43(5):465–469.
- Dilba, G., Bretz, F., Hothorn, L. A., and Guiard, V. (2006). Power and sample size computations in simultaneous tests for non-inferiority based on relative margins. Statistics In Medicine, 25(7):1131–1147.
- Dilba, G., Schaarschmidt, F., and Hothorn, L. (2007). Inferences for ratios of normal means. R News, 7:20-23.
- Djira, G. and Hothorn, L. (2009). Detecting relative changes in multiple comparisons with an overall mean. *J Quality Control*, 41:60–65
- Djira, G. D., Hasler, M., Gerhard, D., and Schaarschmidt, F. (2012). mratios: Inferences for ratios of coefficients in the general linear model. R package version 1.3.17.
- Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. *Journal Of The American Statistical Association*, 50(272):1096–1121.
- Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2012). mvtnorm: Multivariate Normal and t Distributions. R package version 0.9-9994.
- Gerhard, D. (2010). Simultaneous small sample inference based on profile likelihood. Master's thesis, LUH.
- Hasler, M. and Hothorn, L. (2008). Multiple contrast tests in the presence of heteroscedasticity. Biometrical Journal, 51:1.
- Hasler, M. and Hothorn, L. (2013). Simultaneous confidence intervals on multivariate non-inferiority. Statistics in Medicine, DOI: 10.1002/sim.5633:DOI: 10.1002/sim.5633.

References II

- Hasler, M. and Hothorn, L. A. (2011). A Dunnett-Type Procedure for Multiple Endpoints. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 7(1).
- Hayter, A. J. (2013). Inferences on the difference between future observations for comparing two treatments. JOURNAL OF APPLIED STATISTICS, 40(4):887–900.
- Herberich, E. and Hothorn, L. A. (2012). Statistical evaluation of mortality in long-term carcinogenicity bioassays using a williams-type procedure. *Regulatory Toxicology And Pharmacology*, yy:xx. In press.
- Hirotsu, C., Yamamoto, S., and Hothorn, L. A. (2011). Estimating the Dose-Response Pattern by the Maximal Contrast Type Test Approach. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 3(1):40–53.
- Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50(3):346–363.
- Ioannidis, J. P. A. (2005). Why most published research findings are false. Plos Medicine, 2(8):e124.
- Jaki, T. and Hothorn (2013). Statistical evaluation of toxicological assays: Dunnett or williams test?- take both. Arch Tox, 00:00.
- Jaki, T., Kitsche, A., and Hothorn, L. (2013). Statistical evaluation of toxicological assays with zero or near-to-zero proportions or counts in the concurrent negative control group: A tutorial. Regul. Pharm . Tox., 00:000.
- Kitsche, A. and Hothorn, L. (2013). Testing for qualitative interaction using ratios of treatment differences. Statistics in M.
- Konietschke, F., Boesiger, S., Brunner, E., and Hothorn, L. (2013). Are multiple contrasts tests superior to the anova. Int. J. Biostat. 00:00.
- Konietschke, F. and Hothorn, L. A. (2012). Rank-based multiple test procedures and simultaneous confidence intervals. ELECTRONIC JOURNAL OF STATISTICS. 6:738–759.
- Konietschke, F., H. L. (2011). Evaluation of toxicological studies using a non-parametric shirley-type trend test for comparing several dose levels with a control group. Statistics in Biopharmaceutical Research, xx:(in print).
- Kruppa, J. (2009). Simultaneous confidence intervals for mixed effect parameters in a linear mixed model. Master's thesis, LUH.
- Kuiper, R., Gerhard, D., and Hoth (2013). Identification of the minimum effective dose for normally distributed endpoints using a model selection approach. *tba*.
- Mi, X., Miwa, T., and Hothorn, T. (2009). mvtnorm: New Numerical Algorithm for Multivariate Normal Probabilities. *R JOURNAL*, 1(1):37–39.

References III

- Pallmann, P., Schaarschmidt, F., Hothorn, L. A., Fischer, C., Nacke, H., Priesnitz, K. U., and Schork, N. J. (2012). Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. MOLECULAR ECOLOGY RESOURCES, 12(6):1068–1078.
- Phillips, A. (2013). Multiplicity: discussion points form the statstatistic in the pharmaceutical industry multiplicity expert group. Pharmaceutical Stat, 12:255–259.
- Ryu, E. J. and Agresti, A. (2008). Modeling and inference for an ordinal effect size measure. Statistics In Medicine, 27(10):1703–1717.
- Schaarschmidt, F. (2013). Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 58:265–275.
- Schaarschmidt, F. and Biesheuvel, E. (2008). Asymptotic simultaneous confidence intervals for many-to-one comparisons of binary proportions in randomized clinical trials"]. *J. Biopharmaceutical Statistics*, 18:(accepted).
- Schaarschmidt, F., Sill, M., and Hothorn, L. (2007). Poly-k-trend tests for survival adjusted analysis of tumor rates formulated as approximate multiple contrast test. Technical report, Leibniz University Hannover, Institute of Biostatistics.
- Schaarschmidt, F., Sill, M., and Hothorn, L. A. (2008). Poly-k-trend tests for survival adjusted analysis of tumor rates formulated as approximate multiple contrast test. *Journal Of Biopharmaceutical Statistics*, 18(5):934–948.
- Shirley, E. (1977). Nonparametric equivalent of WILLIAMS test for contrasting increasing dose levels of a treatment. *Biometrics*, 33(2):386–389.