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Our Motivation |

= Given: high-dimensional gene expression data with survival
outcome (like Rosenwald et al. N Engl J Med, 2002)

" Goal: identify genes possibly linked to survival

= Talk: limited to univariate gene selection, but methods
generalize to other gene selection methods.



Our Motivation I

Typical analysis: Cox regression
Cox regression assumes proportional hazards:

= A constant effect of gene expression on survival over the
whole period of follow-up.

Problem: Proportional hazards assumption may be
guestionable, but cannot be verified for all genes.

lgnoring the proportional hazards assumption:

= Cox regression will lead to over- and underestimation for
a considerably number of genes.

= Cox regression hazard ratios are not directly comparable.



A possible Solution

We need a summary measure of effect size
which is suitable to rank genes when some
genes may exhibit a time-dependent effect on
survival.

m) generalized concordance probability



Outline

Concordance probability ¢
Generalized concordance probability ¢’ for continuous data
Two methods to estimate ¢’
= Concordance regression
= Weighted Cox regression
Comparison of Cox, concordance and weighted Cox regression
" in Monte Carlo Study
" analyses of real data
Extensions
Conclusions



Concordance probability c

Consider 2 groups:

¢ = non-parametric measure of separation of the survival
distributions:
c=P(T,<T,)

Uncensored data: ¢ = Mann-Whitney statistic

Under proportional hazards:
= Cox regression hazard ratio = exp(f) =¢/(1 - ¢)
Under non-proportional hazards: \

= eX +c/(l-c
p(B) # c/( ) Odds of
= ¢ still has an intuitive interpretation concordance




Concordance probability c
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Generalized concordance probability ¢’

= Consider a continuous variable X:

= Define I'(x,,x,) = logit| P{T'(x,) < T(x,)}|
as the log odds of concordance between two individuals with
arbitrary log-2 gene expression values x;and x;.

= Assume that I'(x;,x;) oc (x, —x,;) £ Linearity assumption

= Implies I'(x;,x;)/ (x, —x,) =y irrespective of the actual values
of x;and x;.

"= The generalized concordance probability ¢’ is

¢ = XP0) _ prrix v i) < T(X = X))
1+ exp(y)




Concordance regression |

Model ¢’ by conditional logistic-type (concordance) regression:
exp(x, /)
exp(x, ) + exp(x,5)
The derivative of the conditional logistic log likelihood:
x, eXp(x,f) + x, exp(x,[)
ol of = - : ! !
g %[x’ exp(x, ) + exp(x,3)

Summation: over all available ‘risk pairs’ (i, j) such that ¢, < 7.

P|T(x)<T(x,)]|=

p denotes the logit| P{T(x,) < T(x,)}] related to a one-unit
increase in X

= ,3 directly estimates y
= ;' = exp(B)/{L+exp(B)}



Concordance regression |l

= No censoring:

» Each individual appears in n-1 ‘risk pairs .

= Censoring:

= Omit all risk pairs where the shorter time ¢, is censored
m) Overrepresentation of some individuals
m) \Veight the remaining risk pairs by their
inverse sampling probabilities.



Concordance regression Il

* Weight function: Assume ¢, <z

# of risk pairs with subject i dying earlier
had censoring not occured \

A NOSE) -1
Wi J) = N(t) -1 G) \

# of risk pairs with / Compensates the attenuation

subject i dying earlier in obseryed events o'lue to
earlier censorship

N(7)= # of subjects at risk at time ¢
S(¢) = left continuous Kaplan Meier estimate at time ¢
G(7)= Kaplan meier estimate with the status indicator reversed at time ¢



Weighted Cox regression |

Schemper et al. (stat. Med 2009) introduce weights into the score
function to obtain average hazard ratio = exp(/)

The weights are chosen to maintain the interpretability of
estimates under non-proportional hazards:

Over a wide range of : exp(f) ~ exp(y)



Weighted Cox regression Il

* The weights are defined by

W(ti) — S(ti) X G(ti)_l

/ \

Reflects the relative importance
attributed to the log hazard
ratio at time ¢

Compensates the attenuation
in observed events due to
earlier censorship

S(¢) = left continuous Kaplan Meier estimate at time ¢
G(¢) = Kaplan meier estimate with the status indicator reversed at time ¢



‘Univariate’ Simulation

= Match gene expression [N(O, 1)] to marginal failure times
[Weibull(2, 0.5)] by algorithm of MacKenzie and

Abrahamowicz (stat comput, 2002)

= Type of time-dependency
" Proportional hazards

= Converging hazards o

= Varied amount of censoring and effect sizes
= 2000 samples of 200 observations

" For each sample and each method univariate models are fit.



Proportional hazards

B(time)
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‘Multivariate’ Simulation

= Mimic real-life gene expression data:
= according to Binder and Schumacher (stat Appl Genet Mol Biol, 2008)

= 72 of 5000 genes have additive effect on log hazard:
= 1/3 with proportional hazards
= 1/3 with
= 1/3 with converging hazards

= Varied amount of censoring and sample size

1) Rank genes by univariate absolute effect size.
2) ‘Select’ 72 top genes for each method.
3) Compare the true positive rates.



‘Multivariate’ Simulation Il

Select 72 genes from 5000 candidate genes
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‘Multivariate’ Simulation

= Mimic real-life gene expression data:
Gene selection should depend on effect size,
not on type of time-dependency and/or censoring:

+ Concordance regression
~ Weighted Cox regression: prefers converging hazards

~ Cox regression: dependent on censoring



Application to real-life data |

Bhattacharjee et al. data Rosenwald et al. data
(PNAS, 2001) (N Engl J Med, 2002)

Lung adenocarcinomas = Diffuse large B-cell lymphoma

Patients: 125 = Patients: 240

Survival endpoint: 71 = Survival endpoint: 138

Genes: 12600 = Genes: 7053

1) For each gene and each method fit univariate models.
2) Rank genes by absolute effect size.
3) ‘Select’ the 250 top genes for each method.



Application to real-life data Il

‘Select’ 250 top genes ...

Bhattacharjee et al. data Rosenwald et al. data
Weighted Weighted
Cox reg. Cox reg.
Cox reg. ‘ Cox reg. ,
Concordance Concordance

reg. reg.



Extensions: multivariable modeling
with concordance regression

So far only univariate modeling was discussed
Multivariable models straightforward

Regularization (LASSO, ridge, elastic net) possible via
penalized R package: selection and prediction
Regularized concordance regression

" may provide more robust models than regularized
Cox regression

" js less dependent on censoring pattern, more generalizable
to other validation cohorts or populations

" can be used for sensitivity analysis

= or for enrichment of a gene set found by regularized
Cox regression



Extensions: nonparametric ¢

» Semi-parametric: ¢’ = P(Tl- <T|X;=X; + 1)

* Non-parametric: ¢ = P(Tl- <TlX; > Xj)
= Harrell (1982)
= Assessing relationship of a prognostic index with survival
= Applied in Ma & Xiao (Brief Bioinform, 2010)

= Robust to misspecifications



Conclusions

We propose to use ¢’ as a summary measure of effect size to
rank genes irrespective of the type of time-dependency and
censoring pattern.

¢’ is a concise single number useful for clear decisions at time 0.

Concordance regression gives the least biased and most stable
estimates irrespective of type of time-dependency and
censoring pattern.

Software implementation: R packages
* Weighted Cox regression: coxXphw (available at CRAN)

= Concordance regression: concreg (semiparametric ¢“and
nonparametric c; available at CRAN)



