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Motivating Example

= patients with chronic kidney disease
(Jantos-Siwy et al, 2009)

= urine samples from 28 diabetic CKD
= urine samples from 27 non-diabetic CKD
= 4,290 proteins

= Goal:
to find proteins differentially expressed in
diabetic and non-diabetic patients
= significance
= magnitude of difference (shift in location)
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Example Proteins

» Percentage of point-mass values (PMVs):

| Min| 01 |Median]| Q3 | Max_

non-diab. (n=27) 0% 67% 85% 93% 100%
diabetic (n=28) 0% 71% 86% 96% 100%

= Within compounds: PMV proportions mostly
similar between groups

= Consonant vs. dissonant:

_ consonant | equal prop. | dissonant

number of proteins 2634 17 1637
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Concepts

= Two alternative models for data distribution:

I. left-censored continuous distribution:
= e.g. log-normal
= censored at limit of detection
= Hy: equality of location
parameters

= dissonant group differences
only by chance

= e.g., Zhang et al (2009)
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Concepts

= Two alternative models for data distribution:

Ii. mixture distribution:
=  binomial part
= presence of signal

= continuous part
= intensity if signal present
(log-normal, gamma, ...)

= Hy: compound hypothesis!

= consonant as well as
dissonant group differences

= e.g., Taylor & Pollard (2009)
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Concepts: Comments (1/3)

= Location parameters measure different things!

= Both concepts do not a priori distinguish between
= ,technical PMVs": signal present but not detectable
* high variance and low mean
« incorrect detection or misinterpretaion of signal
= ,biological PMVs": no signhal present

 biological phenomenon expressed through more than
one compound - bimodal distribution
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Concepts: Comments (2/3)
= Taylor & Pollard (2009):

= ,truncated values" [technical]:

» below limit of detection (LOD)

* “lower bound on meaningful signal set by researcher"
= ,true zeros" [biological]

= Hallstrom (2009):
= ,rancid part of the sample™ [biological]

= Senn et al (2012):
= ,the ghost of departed quantities™ [technical?]
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Concepts: Comments (3/3)

= Hard (impossible?) to identify concept that
corresponds best to real data

= Choice of concept crucial for results of
simulation studies!

= Up to now: simulation studies only based on
concept that fits the presented test statistic
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Test Statistics: concept (i)

= One-part tests:
= Wilcoxon‘s rank-sum test
- Hodges-Lehmann estimator of location shift

= T-test for unequal variances (+ imputation)
- difference of means

= Truncated tests:

* Truncated Wilcoxon-test (Hallstrom, 2009)
- apply Wilxocon's rank-sum test to data after removing
equal number of point-mass values
- Hodges-Lehmann estimator after truncation
= Truncated T-test
- same idea, adapt degrees of freedom
- difference of means after truncation
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Test Statistics: concept (i)

= Tobit model (following Zhang et al, 2009)
- parametric model based on truncated normal distribution
- maximum likelihood estimation, LR p-value
- direct estimate for difference of means
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Test Statistics: concept (ii)

= Two-part tests
(Taylor & Pollard, 2009, based on Lachenbruch, 1976):

X2 statistic for binomial part
+ (statistic for contin. part)?
= X2 statistic with 2 d.f.

= Two-part Wilcoxon‘s rank-sum test
- Hodges-Lehmann estimator for continuous parts
= Two-part T-test for unequal variances
- difference of means for continuous parts
= Empirical LR Test (Taylor & Pollard, 2009)
-LR=L(p, p,-) / L(pOIpll Ho, IJll"')
- empirical distributions of groups plugged into LRT
- no direct effect estimate available!
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Test Statistics: concept (i+ii)

» Left-inflated mixture (LIM) model
= combine Tobit model with two-part approach!

* Yang & Simpson (2010) technical PMVs
biolocial PMVS{

po (1 —p, )@ (lod | 4,0, ) for x, a PMV
fL/M(X,|/JO,O'O,p0;/od): @ 0 ( 2,00

otherwise

= X; fori=1,.., ny: log-transformed values of first group
= p, = proportion of biological PMVs

= u,and o,: mean and standard deviation of (underlying but
left-censored) normal distribution

= ®() and @ (): normal distribution
= analogously for second group with same /fod = log,(LOD)

- likelihood ratio test (under Hy: g = Uy, po = P1, Og * 0y)
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Simulations

= General model
= p, and p, control “biological PMVs”
= difference in location parameters (log-normal)
= LOD triggers “technical PMVs"!
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Simulations

= Scenarios:
= ny, Ny = 10, 25
= shift d =0, 1, 2 (= y; - 4y on log,-scale)
= po, P; = 0.0, 0.2, 0.5

» Jod = -0, -0.5, 0.0 on log,-scale
corresp. to 0%, 31%, 50% ,technical PMVs" with y =0
and 0%, 7%, 16% ,technical PMVs" with y =1
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Simulations

= Scenarios:
= ny, Ny = 10, 25
= shift d =0, 1, 2 (= y; - 4y on log,-scale)
= po, P; = 0.0, 0.2, 0.5

* Jod = -0, -0.5, 0.0 on log,-scale
corresp. to 0%, 3196, 50% ,technical PMVs" with gy = 0
and 0%, 7%, 16% ,technical PMVs" with g =1

= simulate 500 independent proteins,
of which 250 are differentially expressed

= 500 simulations for each scenario

= Note: all variances = 1
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Simulations (n,, n,

25)
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Simulations (ny, n; = 25)

e

49.7 49.4
BT 1 05 0.2 -x 98.0 0.9 1.1
B2 1 0.2 0.2 -x 43.1 14.1 42.8
B3 1 0.2 05 -o 1.1 0.9 98.0
T 1 00 0.0 -0.5 97.8 1.0 1.1
M1
M2
M3
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Simulations (ny, n; = 25)

e

49.7 49.4
BT 1 05 0.2 -x 98.0 0.9 1.1
B2 1 0.2 0.2 -x 43.1 14.1 42.8
B3 1 0.2 05 -o 1.1 0.9 98.0
T 1 00 0.0 -0.5 97.8 1.0 1.1
M1 1 0.2 0.0 -0.5 99.0 0.1 0.9
M2 1 0.2 0.2 -0.5 89.4 4.2 6.4
M3 1 0.0 0.2 -0.5 60.6 11.4 28.1

Example Concepts Simulation Application Conclusions Andreas Gleiss, CeMSIIS

10



Simulations: True Positive Rates
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Simulations: Effect Estimates
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Simulations: PMV prop. for LIM-LR
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Application: Example Proteins
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onsonant

Test p-value effect
estimate

one-part W
one-part T
truncated W
truncated T
Tobit
two-part W
two-part T
ELRT
LIM-LR

0.009
0.227
<0.001
<0.001
0.078
0.003
0.001
<0.001
0.001

1.62
0.97
1.93
2.33
2.05
1.61
1.73
1.61
1.76

Application: Example Proteins

04

rel frequency
02

i

Protein 67217
(non-diabetic)

o o

rel fraquancy
o2 04

ali

log2-imensity

Protein 67217
(diabetic)

oo
o o

Example Concepts Simulation Application Conclusions Andreas Gleiss, CeMSIIS

'_]’_‘ | m—— |
10

log2-inlersily

dissonant

15

Test p-value effect
estimate

one-part W
one-part T
truncated W
truncated T
Tobit
two-part W
two-part T
ELRT
LIM-LR

0.701
0.880
0.394
0.236
0.287
0.001
<0.001
<0.001

0.00
0.14
0.67
-1.08
-1.41
1.60
1.54
1.60
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Application: Example Proteins

3 biolog.PMV | protein 67217
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0.00
0.14
0.67
-1.08
-1.41
1.60
1.54
1.60
1.72

+ 2 techn. PMV | (non-diabetic) Test p-value effect
°] % estimate

Conclusions

= strong dependence of results on underlying
data-generating mechanism

= One-part Tests (incl. Tobit) distracted by
biological PMVs

» Two-part Wilcoxon test:
= ,good compromise™: high TPRs, low bias

= no distributional assumptions

= LIM likelihood ratio test:
= generally low bias in all scenarios

= assuming log-normal distribution
= classification of PMVs (technical vs. biological)
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= if no prior knowledge about technical and biological PMVs

= higher TPRs in technical and consonant mixed scenarios
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