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Class prediction  for high-dimensional   class-imbalanced 
 data 

    p   >>   n 

  variables           samples 

 

n1 ≠ n2 

Class 1           Class 2 

 samples         samples 
   

Variables 

Class 

Develop a rule that can 
be used to predict the  
class membership 
  
of new samples  

RULE 



How to perform high-dimensional classification 
• Design a developmental study (training set) to answer a specific 

clinical question 
– Select n subjects (patients, customers, ...)  
– Measure p variables (genes, SNPs, mRNAs, characteristics of a customer) 
– High-dimensional data if p >> n :   

• Select a subset of variables (variable selection) 
 
 

    
    
    
  Predict class  
     membership or calculate  
  risk scores 
     for new samples 
  (test set) 

Obtain a RULE based on the values of the variables for 
the classification of new samples  

The RULE must be completely specified 

• variables included  

•how to combine them 

• normalization of data 

•  thresholds for classification 

• …  



Class prediction rules 
• Many different methods are available to specify the classification rule   

– Discriminant (linear diagonal) analysis  (DLDA, DQDA) 
• Prediction analysis of Microarrays (PAM) 

– Support vector machines  (SVM) 
– Penalized regression methods (PLR-L1, PLR-L2) 
– Classification and regression trees (CART) and random forests (RF) 
– k-nearest neighbor methods (k-NN) 
– … 

 
• Risk of overfitting and spurious findings 
• Simple methods perform well with high-dimensional data (Dudoit et al, 2002) 
• Variable selection - reducing the number of variables usually leads to 

more accurate classification  
 

• No single method is optimal in every situation 
– No Free Lunch Theorem: in absence of assumptions we should not prefer any 

classification algorithm over another 
– Ugly Ducking Theorem:  in absence of assumptions there is no “best” set of 

features 



Overfitting with high-dimensional data 

 

The model 
will not work 
well on new 
data 

Can be easily 
obtained with 
high-
dimensional 
data 

The problem is generally reduced by variable selection and use of 
simple methods 



Class-imbalance: a “problem” for classification 

• Class-imbalanced data = 
The number of samples in 
each class is not equal 

• Most classifiers trained on 
imbalanced data 
– do not accurately predict the 

samples from the minority 
class  

– tend to classify all the 
samples in the majority class  

Learning from Imbalanced Data – He and Garcia, 2009, IEE 
Transactions on Knowledge and Data Engineering 
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Example on the effect of class prevalence 
on the accuracy of a classifier (null case) 

Bad=80 
Good=20 

 
Bad=50 
Good=50 

PA=50% 
PABad=50% 
PAGood=50% 

 
Bad=80 
Good=20 

PA=75% 
PABad=91% 
PAGood=9% 

PA: predictive accuracy 

Training 
set 

Test set 
3-Nearest Neighbor classifier 

 
No difference between classes 
(null case) 

The classifier is 
uninformative 

if PA1=1-PA0  

P(Ŷ=1|Y=1)=P(Ŷ=1|Y=0) 



Why does it happen? 

P(Pr1|H0)=? 

Overall 
Predictive 
Accuracy if 
p1=p2            in 

test set  

Overall PA 

 if p1 Train =p1 Test 

pi=proportion of 
samples in class  i 

p1 in training set 

Theoretical values and expected 
behavior  

Easy to calculate for 3-NN     
(using hypergeometric 

distribution) 

Variable selection increases the 
bias towards the majority class 

Consequences of class 
imbalance for other 

classifiers can be more 
difficult to understand … 



ER+ / ER- 
65  / 34 
 Raw data 

Normalized genes 

3-NN classifier, 40 genes with largest     
t-statistic, missing values replaced by 0 

Test set: 20 ER+ / 20 ER- 

Training set: 5 ER+ / 5 ER-, 10 ER+ / 5 ER-, 
20 ER+ / 5 ER- 

 

7650 clones 
99 samples 

5 ER+ / 5 ER- 10 ER+ / 5 ER- 20 ER+ / 5 ER- 

Does it happen also when there are some differences  
between the classes and using real data?  



Our initial questions 
• Does the high-dimensionality of the data further 

exacerbate the class-imbalance problem? 
• Are there any classification methods that are more 

robust than others? 
• Are the methods commonly used to deal with the 

class-imbalance problem effective if the data are 
high-dimensional? 

• Can we get some theoretical insights on the nature 
of the class-imbalance problem? 

• …  



Simulations 

1,000 iterations Differentially expressed genes Differentially expressed genes Differentially expressed genes 

Training n=80 Test n=20 

10
00

 

10
00

 

Class 2 

Rule 
Genes: 40 genes with  

largest t-statistic 

1-NN, 3-NN, 5-NN, 
DLDA, DQDA, RF, 
SVM, PAM, PLR 
(L2) 
Normalization *samples or genes 

Differentially expressed genes 
No difference between classes :  g1i~id N(0, 1), g2i~id N(0, 1) for all genes  20 DE genes, magnitude of difference: g1i~id N(0.5, 1), g2i~id N(0, 1) 20 DE genes, magnitude of difference: g1i~id N(0.7, 1), g2i~id N(0, 1) 20 DE genes, magnitude of difference: g1i~id N(1, 1), g2i~id N(0, 1) No difference between classes :  g1i~id N(0, 1), g2i~id N(0, 1) for all genes  20 DE genes, magnitude of difference: g1i~id N(0.5, 1), g2i~id N(0, 1) 

Differentially expressed genes 
20 DE genes, magnitude of difference: g1i~id N(0.7, 1), g2i~id N(0, 1) 20 DE genes, magnitude of difference: g1i~id N(1, 1), g2i~id N(0, 1) 

Differentially expressed genes 

Feature Selection 

Class 1 Class 1 Class 2 



Proportion of samples from Class 1 in the training set 

PA1 

PA2 
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Null Hypothesis 
p=40, ntrain=80, same class imbalance in training 
and test set 

PA 

What happens if the number of variables 
increases and we use the 40 most 
different variables for classification?  

PA1, p=40 

PA1, p=10,000 
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PA1, p=1,000 



Sampling variability and class imbalance 

Training set Test set 

After variable selection (p=1000, G=40) 

Null case: distribution of the sample means 
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_ 
Xmaj~N(0,1/√72)  

_ 
Xmin~N(0,1/√8) 

 _ 
|Xmin | 

 _ 
|Xmaj| 

 _ 
|Xmin | 

 _ 
|Xmaj| 

The minority class is not represented well 
by the selected variables 

 
Xmaj~N(0,1); n=72  
Xmin~N(0,1); n=8 



Null Case Results  

(p=1000, G=40, ntrain=80, same class imbalance in training and test set) 

All the classifiers are non-informative (PA1=1-PA0) 



Alternative Case Results – moderate class differences 

(p=1000, G=40, delta=0.7, ntrain=80, same class imbalance in training and test set) 



High-
dimensionality 

Additionally biases classification towards majority class 
for most classifiers. Mostly due to large sampling 
variability of the minority class 

Variable 
selection 

 Improves the PA 
Additionally biases classification towards majority class 
for some classifiers (k-NN) 
 Most variable selection methods share the same 
problems seen here (using t-test) 

Classification 
methods 

 DLDA, DQDA, PLR, RF 
 k-NN, PAM, SVM 

Matching the 
prevalence in 
training and test 
set 

 Does not remove the problem 

Variable 
normalization 

 Further increases the bias if ptrain≠ptest 

 ptrain≠ptest 



No correction Oversampling Downsizing Multiple 
downsizing 

Proportion of samples from Class 1 in the training set 

PA1 

PA2 

PA 

Alternative hypothesis: the classes are different, and prediction using the balanced training 
set is easy 



Does multiple downsizing work also on real 
data? 

Class imbalance (% ER+ samples) 

ER- samples 
5+5 5+10 5+20 5+45 

5+30 



Variable 
selection 

 Improves the PA 
Additionally biases classification towards majority class 
for some classifiers 
 Most variable selection methods share the same 
problems seen here (t-test) 

Classification 
methods 

 DLDA, DQDA, PLR, RF 
 k-NN, PAM, SVM 

Matching the 
prevalence in 
training and test 
set 

 Does not remove the problem 

Variable 
normalization 

 Further increases the bias if ptrain≠ptest 

 ptrain≠ptest 

Solutions / Built-in solutions (SVM, RF, PAM) 
 Downsizing 
 Oversampling 
 Multiple downsizing 



SMOTE  
Synthetic Minority Over-sampling TEchnique 



Does SMOTE work? 
 (null case, p=1000) 



Does SMOTE work if we perform variable selection? 
 (null case, p=1000, 40 selected) 



Does SMOTE work if there is a difference between classes? 
(alternative case, p=1000, 40 selected) 

Small 
differences 

Large 
differences 



Could we expect it? 

 
 

It does not affect much 
the classifiers that rely on 
mean values (DLDA) 

It negatively affects the 
classifiers that use class-
specific variances (DQDA). 
Care with variable selection 
methods! 

If data are high-dimensional: 
classifiers that base their 
classification rule on the  
Euclidean distance tend to 
classify most samples in the 
MINORITY class (k-NN without 
variable selection) 



Other theoretical results 

• SMOTE introduces correlation between some 
samples 

 
•   

If they “share” two original samples 

Otherwise 

If the original sample was used to 
generate the SMOTE sample 

Otherwise 

Can we still reliably use classification methods and variable selection methods that 
assume independence between samples (discriminant analysis methods, PLR, two 
sample t-test, …) ? 

If they “share”one of the original 
samples 



Effect of SMOTE on two-sample t-test P-values 

Null case, p=1000, n=10+90 

P-values P-values 

Original data After “SMOTE-augmenting” the data 



Do we see the same things on real data? 

SMOTE works (mostly) better 
than no-correction, but is 
outperformed by simple down-
sampling (that uses a much 
smaller sample size) 



Summary of the performance of SMOTE on 
low and high-dimensional data 

 
 
 
 
 
 

• NC: no correction 
• CO: classification cut-off calibration 



Conclusions 
• High-dimensionality of data exacerbates the class imbalance problem 
• Some classifiers are less sensitive than others to class imbalance 

– DLDA seems to work well also in this setting if the class-imbalance is not too 
extreme 

• Solutions 
– Down-sizing works surprisingly well (fewer data better than imbalanced data!) 

but wastes a lot of data 
• Combination of down-sized classifiers works very well 

– Over-sampling is generally a bad idea, SMOTE is not improving over simple 
downsampling 

– Change  
– Cut-off calibration (ongoing work) 

• Worked reasonably well for RF, PLR and k-NN  
 

• Normalization of variables exacerbated the problems 



Ongoing work 

• Further explorations for the penalized logistic 
regression methods (PLR-L1 and PLR-L2) 

• Evaluation and adaptation of boosting methods for 
high-dimensional (and class-imbalanced) data 

• cartHD: R package that includes functions to fit 
classification trees with binary outcomes and to 
correct the analysis for the class-imbalance problem 
– Multiple downsizing, boosting, cross-validation, … with fast 

implementation for high-dimensional data and repeated estimation 



Some references 
• Japkowicz N, Stephen S: The class imbalance problem: A systematic 

study. Intell Data Anal 2002, 6(5):429-449. 
• He H, Garcia EA: Learning from imbalanced data. IEEE Trans Knowledge 

and Data Eng 2009, 21(9):1263-1284. 
 

• Our published work on the topic 
– Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010, 

11:253  
– Impact of Class-Imbalance on Multi-Class High-Dimensional Class Prediction. 

Metodoloski zvezki – Advances in Methodology and Statistics 2012, 9: 25-45. 
– SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics 2013, 14:106 
– Improved shrunken centroid classifiers for high-dimensional class-imbalanced data. 

BMC Bioinformatics 2013 

 



Threshold calibration 

0 1 

Class 1 Class 2 

Number 

Develop the rule PLR: P(Class 1| X ) 

RF: proportion of trees that classify the 
sample in Class 1 

k-NN: proportion of NN from Class 1 

Cl1      20%      50%       80%    

P(
Cl

1|
X)

 

Estimated on the 
training set (by CV) 



Thr=0.50 

Proportion of samples from Class 1 in the training set 

PA1 

PA2 

PA 

Thr=proportion of samples 
from Class 1 

Alternative hypothesis: the classes are different, and prediction using the balanced training 
set is easy 

MultDS 
Predictive value vs predictive accuracy 

PA1=P(Predicted Class1| True Class1) 

PV1=P(True Class1| Predicted Class1) 

 

Estimated Thr 



Other functions that can be used to 
estimate the threshold 

Proportion of samples from Class 1 in the training set 



 



How to evaluate the performance of a 
classifier 

• Classification error 
– A sample is classified in a class to which it does not belong 

• g(X) ≠ Y 
• Predictive accuracy (PA)=% of correctly classified samples 

– careful interpretation! 

– In a two-class problem, using the terminology from diagnostic tests 
(“+”=diseased, “-”=healthy) 

• PA+ =Sensitivity = P(classified +| true +) 
• PA- =Specificity = P(classified -| true -) 
• Positive predictive value = P( true +| classified + ) 
• Negative predictive value = P( true - | classified -) 

– It is important to report all 4 when classes are imbalanced 
 

 

Class-specific predictive accuracies 
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