RUHR
UNIVERSITAT
BOCHUM

Optimal Designs for Dose Finding Studies with an Active
Control

Holger Dette!  Norbert Benda®  Frank Bretz3
Katrin Kettelhake!  Christine Kiss!

1Department of Mathematics, Ruhr-University Bochum, Germany
2Federal Institute for Drugs and Medical Devices

3Statistical Methodology, Novartis Pharma AG

Wien 2014

1/38



Outline

@ Motivation

Introduction to optimal design theory

Dose finding studies with an active control

Examples

Conclusion

2/38



Motivation

1619

0.0

Noald.8)

@ Dose-response relationship

Emacd 91d
n(d,0) = Eo+ gty = o+ 5,45

— EMAX-model

T
30
dose (d)

T
40

J
60

3/38



Motivation

1619

@ Dose-response relationship

Emaxd Y1d

— EMAX-model

0.0

T T T T T J
0 10 20 30 40 50 60
dose (d)

— aim: estimate 6 = (Yo, 91,92)" (or a functional of 6, such as the ME

D)
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Mathematical background

@ Doserange DCR — dy,...,d, €D

@ n; observations at dose level d;

> Y171,. cy Y17,,1, PN Yk,l; PN ka"k
» Y;; — effect of the drug on patient j at dose level dj
» N= Zf.;l n; total sample size

@ Assumption:
Yij =n(d;,0) +cij

> &ij ~ N(0,0%)
> 0= (Y,...,0)" model parameter

o Expected effect E[Y;; | d, 6] = n(d;, )
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Optimal Design

Problem: Choice of the dose levels d; and sample sizes n; for a most
efficient inference.

Approximate Designs

Probability measure with weights ws, ... ,wx € (0,1) and Zf'(:l wi=1

52(@ » @) e

w1 ... Wk
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Optimal Design

Problem: Choice of the dose levels d; and sample sizes n; for a most
efficient inference.

Approximate Designs

Probability measure with weights ws, ... ,wx € (0,1) and Zf'(:l wi=1

€:<m » @) e

w1 ... Wk

Example

15 30 45
ééX:: 1 1 1
3 3 3
@ 3 dose levels
e N = 9 patients — 3 observations at each dose level
@ N = 10 patients — rounding

— 3, 4 and 3 observations at dose levels 15, 30 and 45
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Measuring the quality of estimation

Information Matrix M(&, 6)

o Op. maximum likelihood (ML) estimator

o Var(fuL) = %M_l(fae)
d ) 0 t
M(e.0) = Y (i) (50di0)) |

Jj=1

where 211(d,6) = (Zen(d.0), . .. 5n(d, 0))"

6/38




Measuring the quality of estimation

Information Matrix M(&, 6)

o Op. maximum likelihood (ML) estimator

o Var(Ou) ~ U—/\?M_l(fae)

M@ﬁ%=i?ﬁ@%ﬂ%@)(%M%ﬁﬁ:

where 211(d,6) = (Zen(d.0), . .. 5n(d, 0))"

Note: other estimates give different precision measures!
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Information Matrix - Example

k = 3 dose levels and e Linear-model 7(d, ) = 99 + ¥1d

o Gradient
¢ _(15 30 45) 5
ex=|l1 1 1 .
1 1 1 0 _ 1
N n(d,0) = (1,)
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Information Matrix - Example

k = 3 dose levels and e Linear-model 7(d, ) = 99 + ¥1d

o Gradient
¢ _(15 30 45) 5
ex — |1 1 1 g _ t

M(er6) = Zw (56.0)) (Gnie0))

- % (115> (1,15) +% (310) (1,30) +% (415) &)

(1 30
— (30 1050
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Comparing different designs

An “optimal design” minimizes Var(Ap), that is
M~1(&,0) — min

Note: M~1(¢,0) is a matrix.
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Comparing different designs

An “optimal design” minimizes Var(Ap), that is
M~1(&,0) — min

Note: M~1(¢,0) is a matrix.

— Solution: minimize (statistical meaningful) real valued functionals of the

matrix M~1(¢£,0) — "optimality criteria"

v
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Comparing different designs

An “optimal design” minimizes Var(fy), that is
M~1(¢,6) — min
Note: M~1(¢,0) is a matrix.

— Solution: minimize (statistical meaningful) real valued functionals of the
matrix M~1(¢,0) — "optimality criteria"

v

Optimality criteria

#(€,0) = (det(M~1(¢,0)))=T  D-optimality
B(&,0) = Amax(M71(£,0)) E-optimality
#(&,0) = ctM~L(€,0)c c-optimality
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Locally optimal designs

Note: Information matrix depends on (unknown) parameters.

Fix g € © (guess) — M_l(f, 90) — ¢(§, 90)

A design & is called locally ¢-optimal if it minimizes ¢(&, 6o).
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Locally optimal designs

Note: Information matrix depends on (unknown) parameters.

Fix 0o € © (guess) — M7 60)) — (& 0)

A design &; is called locally ¢-optimal if it minimizes ¢(&, 6o). J

Note: £; depends on the (unknown) parameter g
— "locally" optimal designs

@ locally optimal designs serve as benchmark for commonly used designs

@ locally optimal designs are used in more advanced design strategies
(e.g. Bayesian- or adaptive designs)

9/38




¢-Efficiency

Comparison of the performance of a given design £ with respect to the
"best" design &5

£ g
eff (6., 00) = % € [1,00)
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¢-Efficiency

Comparison of the performance of a given design £ with respect to the
"best" design &5

£ g
eff (6., 00) = % € [1,00)
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Example
e D = [0,60], EMAX-model,

fex = (0.4,1.2,8)" — 1(d,0) = 0.4 + 129

° &= (? 6'3’2 610> locally D-optimal design

3 3 3

15 30 45
fex=1|1 1 1

3 3 3
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Example
e D = [0,60], EMAX-model,

fex = (0.4,1.2,8)" — 1(d,0) = 0.4 + 129

° &= (? 6'3’2 610> locally D-optimal design

3 3 3
15 30 45
fex=1|1 1 1
3 3 3

1
det(M(£5,0ex)) \ 3
eff(gem aex) = <det(M(£Z,0ex))) = 22.486
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Example
e D = [0,60], EMAX-model,

fex = (0.4,1.2,8)" — 1(d,0) = 0.4 + 129

° &= ((1) 6'3’2 610> locally D-optimal design

3 3 3

15 30 45 0 10 60
fx=(1 1 1) Cc=(1 1 1

3 3 3 3 3 3

1
det(M(£5,0ex)) \ 3
eff(gem Hex) = (det(M(éZ,Gex))> = 22.486

Wl

e (Cons Vo) = (dmmieny)’ = 1.04748

det( M(&eXQ ,Oex ))
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c-optimal designs

@ A design & is called locally c-optimal if it minimizes
ctM~(&,0)c

where ¢ € RSt is a given vector.
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c-optimal designs

@ A design & is called locally c-optimal if it minimizes
c"tM~(&,0)c
where ¢ € RSt is a given vector.

@ Many other statistical problems yield to c-optimal design problems:

» quantile estimation (MED)

» estimation of individual parameters

» extrapolation

» estimation of the area under the curve
» estimation of extrema

> etc.
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Example: Michaelis Menten model

@ Michaelis Menten model

77(0’7 9) = ﬂifd

@ Typical application in dose response studies. Estimation of the
minimum effective dose.

e Example: ¢; = 0.467, ¥, = 25; X = [Oug, 150u¢]

t
o) d v1d
° @U(d, 0) = (192+d’ _(192_1_(1*)2)
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Optimal designs for MED-estimation

@ Variance of the ML-estimate for the MED is approximately given by
O'2 —
TcH(O)M™(&,0)c(0)

where the vector c(0) is given by

e(0) = (~25.1)
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Optimal designs for MED-estimation

@ Variance of the ML-estimate for the MED is approximately given by

ot (O)M (€, 0)c(9)

where the vector c(0) is given by

@ The optimal design for MED-estimation minimizes the variance of the
ML-estimate, i.e.

{mED = arg mgin c (O)M™(&,0)c(6)
@ Locally c-optimal designs can be found geometrically.
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Construction of the Elfving set - Step 1

(onven) - fsta (L) veo)

dz2
0.000 0.005 0010
1 1 1

-0.005
1

-0.010
1
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Construction of the Elfving set - Step 2

1 1
- . deD}u{—d< > deD}
{192+d <_19;9+d) | J2+d —195% |

o
2]
3
w0
2
g |
i I/"—DQWW%Q
o 000
o~ o (]
o o Oo
b= 3
,
) M
P
g |
o
°
g |
2
E

16 /38



Elfving set for the Michaelis Menten model

1 1
Rz eon (ks (L, ) 192 olsta (L ) 192 })
2 2

—2(x)

—0.010 —0.005 0.000 0.005 0.010
L L L L I
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Elfving's Theorem (1952)

@ A design £ with weights w; at the points d;, i = 1,..., k, is c-optimal
if and only if there exist constants v > 0 and ¢1,...,e, € {—1,1}
such that:

(a) The point vc can be represented as

k
ye = Zwi5i%n(di7 0).

i=1
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Elfving's Theorem (1952)

@ A design £ with weights w; at the points d;, i = 1,..., k, is c-optimal
if and only if there exist constants v > 0 and ¢1,...,e, € {—1,1}
such that:

(a) The point vc can be represented as

k
ye =" wieiZm(d;,0).
i=1

(b) The point «yc is a boundary point of the Elfving set

R1 = conv ({Zn(d,0) | d e D} U{-Zn(d,0)|d e D}).
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Elfving's Theorem (1952)

@ A design £ with weights w; at the points d;, i = 1,..., k, is c-optimal
if and only if there exist constants v > 0 and ¢1,...,e, € {—1,1}
such that:

(a) The point vc can be represented as

k
ye = Zw/‘&'%n(di, 0).

i=1
(b) The point «yc is a boundary point of the Elfving set
R1 = conv ({Zn(d,0) | d e D} U{-Zn(d,0)|d e D}).

o Note: c-optimal design problem reduces to a (convex) geometric
problem.

18/38



MED-optimal designs for the Michaelis Menten model

Locally MED-optimal design for A = 0.1 = ¢ = (—68.12,1)

-0005 0.000 0005 0012

<0010

= 92.5% and 7.5% of the observations at 13ug and 150ug

T
05 00 05
1)
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MED-optimal designs for the Michaelis Menten model

Locally MED-optimal design for A = 0.2 = ¢ = (—93.633,1)

0012
I

000
//
///
y
y
Fx
//
T
/
/
/
/
/

0
0.000
/

/

-0005
I

<0010
I

= 100% of the observations at 19ug
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Active-controlled dose finding studies

° nj = Ny observations as realisations of random variables

k
j=1

> Yneu:_,lu ey Yneul,nl ) Yneuz,17 ERE) Yneuz,nz Yoy Yneuk,lv LR Yneuk,nk

d1 dz d k
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Active-controlled dose finding studies

° nj = Ny observations as realisations of random variables

k
j=1

> Yneu:_,lu ey Yneul,nl ) Yneuz,17 ERE) Yneuz,nz Yoy Yneuk,lv LR Yneuk,nk

d1 dz d, k

Yneu;,j — effect of the new drug on patient j at dose level dj

Assumption: Yy, j = 1(d;i,0) +¢ij, eij ~N(0,0%)
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Active-controlled dose finding studies
° Jlle nj = Ny observations as realisations of random variables

> Yneul,lu ey Yneul,nl ) Yneuz,17 ERE) Yneuz,nz Yoy Yneuk,lv LR Yneuk,nk

dy da dy

Yneu;,j — effect of the new drug on patient j at dose level dj

Assumption: Yy, j = 1(d;i,0) +¢ij, eij ~N(0,0%)

@ N — N; = N, observations as realisations of random variables
> Yac,1> RN Yac,Nz
~—_———

C

Yac,1 — effect of the active control on patient / at a fixed dose level C

Assumption: Yy, =pu+e, g ~N(0,03)

e Model parameter 6 = (Y, ...,9s)" and p
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Active-controlled dose finding studies

e Indicator k € {0,1}

N 0 new drug
" 1 AC
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Active-controlled dose finding studies

e Indicator k € {0,1}

-

o IE[Yneu,-,j ’ diae] = n(diﬁ)
— expected effect of the
new drug at dose level d;

° IE’[Yac,/ ’ C7N] =K
— expected effect of the
active control

16

1.2

0.8 1

0.0

1

new drug

AC

T
30
dose (d)

T
40

T
50
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Active-controlled dose finding studies

e Indicator k € {0,1}

N 0 new drug
" 1 AC

o IE[Yneu,-,j ’ diae] = n(diﬁ)
— expected effect of the
new drug at dose level d;

Nenas(0. 6)

° IE’[Yac,/ ’ Cvu] =K
— expected effect of the
active control

0.8 1

@ dy — dose level of the
new drug providing the 007 o o o - A p
same effect as the active .
control
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Active-controlled dose finding studies

@ In an active controlled dose finding study one has to specify (d, k)

0 (new drug), d dose level
R =
1 (active control), d=C

@ Approximate design

§:<(d1’0) .. (dx,0) (C71)>

w1 e Wi Wk+1
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Active-controlled dose finding studies

@ In an active controlled dose finding study one has to specify (d, k)

0 (new drug), d dose level
R =
1 (active control), d=C

@ Approximate design

§:<(d1’0) .. (dx,0) (C71)>

w1 PN Wk Whk+1
@ Approximate design for the new drug
~ d ... dy
(4 4
1 ... Wk

where &; = 1 Zj’k .
—Wht
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Active-controlled dose finding studies - Example

Consider
((070) (40,0) (100,0) (C,1)>
§=("1 1 1 3 -
2 8 Z 8
Then
~ 0 40 100
£= (2 12 )
5 5 5
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Active-controlled dose finding studies

@ Information matrix

M(E,0) = ;%((1(Uk+1)A4(579) 0 )

0 rzwk+1

2

0.2
where r* = =1 and
03

W(E.0) = Zh(;n¢m)gwwﬁ0t

(Information matrix of the design € for the new drug).

Note:
A 2
o Var(d, i) ~ T M1(c.0)
@ Block structure of the Information matrix M(&, 6)
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AC-optimality

Assumption (model)

n(d, 9) =9+ 1917792(d) o

7 strictly increasing, e.g.

26 /38



AC-optimality

Assumption (model)

n(d, 9) =9+ 1917792(d) o

7 strictly increasing, e.g.

26 /38



AC-optimality

Assumption (model)

n(d, 9) =9+ 1917792(d) o

7 strictly increasing, e.g.

dose (d)

Note: dose level of the new drug providing the same effect as the active
control

do =n""(1,0)

Estimate A A A
do = do(f,0) = (51, 0)
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AC-optimality

~ 0’2
Var(dy) =~ chtM_(ﬁ,H)c,

where ¢ = Vdy(u, ) the gradient of the function dy with respect to (6, 1)

Note: The asymptotic variances depend on the design £ and the
parameters 6 and !
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AC-optimality

~ 0'2
Var(dy) =~ chtM_(g,H)c,

where ¢ = Vdy(u, ) the gradient of the function dy with respect to (6, 1)

Note: The asymptotic variances depend on the design £ and the
parameters 6 and !

For fixed 69 and 1o a design &), is called locally AC-optimal if it
minimizes

oM™ (&, bo)co,
where Co = Vdo(uo, 00).

Note: {j, minimizes the (asymptotic) variance of the MED-estimation!
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Locally AC-optimal Design |

The locally AC-optimal design £}, is given by

(%0 (),

r+1 r+1

_ o
where r = .

@ Note: The optimal design for the new drug allocates observations at
do (intuitively obvious).

@ The proof is not obvious (— implicit function theorem + Elfving
theorem).

@ However: This observation is a consequence of the assumption of a
normal distribution.
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Locally AC-optimal Design Il

o Locally optimal designs are often sensitive with respect to the
misspecification of the initial parameters.
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Locally AC-optimal Design Il

o Locally optimal designs are often sensitive with respect to the
misspecification of the initial parameters.

@ Alternative design strategies have been developed:
— Bayesian optimal designs
— Minimax optimal designs
— Adaptive designs
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Standardized Bayesian AC-optimal designs

Recall

o TctM~(€,0)c ~ Var(dp)

o Efficiency

tM_(é-: 00)C0

eff (&, 6o, o) = M (Erc,. 00)co

€ [1,0)
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Standardized Bayesian AC-optimal designs
Recall
o TctM~(€,0)c ~ Var(dp)

o Efficiency

C(gM_(fa HO)CO
Cth_(ff\coa 90)C0

eff(fa907ﬂ0) = € [1700)

A design &g is called standardized Bayesian AC-optimal if it minimizes

/ eff(£,6, 1) (6, 1),

where 7 is a prior distribution for (6, u).

30/38




Standardized Bayesian AC-optimal designs

o (Reparameterized) EMAX-model

n(d,0) = 190+1f1;’d, d €L R]

Theorem

PeTilE (1—2pg)TYE re_

& :< (LO)  (5B2RER 0 (RO) (c,1)>
A i+vps PBi+vrs 1+

is the standardized Bayesian AC-optimal design, where

I 2+ ua
2(v/14H2p2+pra++/ 12+ pg)

pg = r*(V/1+2u2+ pa+ Vi + p1a)?

and pp and pg moments of the prior, (¥ is fixed).
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Examples - locally AC-optimal designs

e EMAX-model — n(d,0) = 9o + lﬁb‘:d (reparameterized)

o D =[10,150] , fp = (2.5,1.125,0.025)" and g = 22.5

o r=1thatis 0? = 03
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Examples - locally AC-optimal designs

e EMAX-model — n(d,0) = 9o + lﬁb‘;d (reparameterized)

e D =110,150] , 6y = (2.5,1.125,0.025)" and up = 22.5
o r =1 that iso%za%

o locally AC-optimal design &},

e, = <(321, 0) (c1,1)>

2 2
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Examples - Bayesian AC-optimal designs
o o € [1,2], 91 € [0.92,1.38], ¥ = 0.025, u € [20, 23]
o o € [1,2], ¥ € [0.92,1.38], ¥, € [0.016,0.025], u € [20, 23]
e 7 uniform distribution

o Bayesian AC-optimal design g and ()

« _  ((10,0) (34,0) (150,0) (C,1)
B = 0.07 0.44 0.03 0.46

. ((10,0) (31.9,0) (150,0) (C,1)
6, = 0.09 0.42 0.02 0.47
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Examples - Efficiencies

Standard designs (from Novartis)

o Efficiencies for estimating the target dose dy = 32

0) (76,0) (150,0) (C,1)

6

1
6

6

6

§s,

§s,

£B,

£B,

eff (€,0, 1)

2.94

2.40

1.58

1.66

(115,0) (150,0) (C, 1))
1 1 1

6

6

)
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Example - Logistic model

® Niog(d,0) = Vo + D1 (1 + exp(2-9))1, d € [10,150]
e Yo € [1,4], V1 € [32,37], ¥, € [45,55], ¥3 € [9,11] and u € [20, 25]

e 7 uniform distribution
o Bayesian AC-optimal designs {p,

. (10,0) (46.2,0) (58,0) (150,0) (C,1)
Bs — 0.02 0.25 0.29 0.01 0.43
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Example - Logistic model

® Niog(d,0) = Vo + D1 (1 + exp(2-9))1, d € [10,150]
e Yy € [1,4], 91 €[32,37], ¥ € [45,55], ¥3 € [9,11] and 1 € [20,25]

e 7 uniform distribution
o Bayesian AC-optimal designs {p,

. (10,0) (46.2,0) (58,0) (150,0) (C,1)
Bs — 0.02 0.25 0.29 0.01 0.43

o Efficiencies for estimating the target dose dy = 32

s, | és &b,
eff(¢,0,u) | 5.81 | 7.53 1.70
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Some conclusions

Optimal designs improve accuracy of statistical inference.

» Estimation of the model parameters.
» Estimation of the MED.
» Estimation of functionals of the parameter (AUC).

Locally optimal designs can be used as a benchmark for commonly
used designs.

Locally optimal designs depend on

» parameters of the model.
» model under consideration.

Robustification is possible (as indicated here for the parameters).
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Future Research

e Other optimality criteria.
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Future Research

e Other optimality criteria.

@ Other distributional assumptions (exponential family).

» Discrete data.
» Block structure of the Information matrix remains.
» Designs have a different structure.
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