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The Need for Robustness in Extreme Value Theory:

An Illustrative Example

• want to estimate an extreme (here 99.5%) quantile

• ideal data: 1000 obs. from exp
(
N (µ = 3, σ = 2)

)
• true value in this example: 3470 ∗

• contamination: modify first 7 observations to ∼ 107

• naïve estimation by empirical quantile:
2960 (ideal), but 8910000 (contaminated)

• parametric (Max-Likelihood) estimation:
3390 (ideal), but 7580 (contaminated)

• robust estimation (by rmx-procedure):
3440 (ideal), but 3710 (contaminated)

∗: all numbers rounded to 3 significant digits
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What are we talking about? — Floodings in Donauwoerth

source: http://www.wwa-don.bayern.de/hochwasser/hochwasserschutzprojekte/donauwoerth
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Location of Donauwoerth in Bavaria

source: http://www.hnd.bayern.de/; traffic lights for alerts from Dec. 12, 2013
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Current Approaches in Hydrology

• techniques from Extreme Value Statistics
see e.g. Reiß/Thomas[97], Katz et al.[02]

• geostastical aspects Regionalization [borrowing strength]
see e.g. Hosking/Wallis[97]
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source: Laaha; clustering by GEV parameters (agnes) fit to block maxima in Saxony

5



Current Approaches in Hydrology (cont.)

• robust estimation
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Issues

• trends and seasonalities:
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in black: daily discharges; trend & seasonality; non-robust: c.f. Reiß and Thomas[07] /

robust: c.f. Fried et al.[07]

• outliers:
• dynamics:
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Research Questions and Challenges

• find models and robust procedures which

– capture extreme behaviour
– provide a simple & parsimonious, yet flexible dynamics
– possibly account for regional effects

• address the question:

inter-arrival time distribution of extremes

no new question: see, e.g., Khaliq et al.[06]
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State Space Models and Filtering Problem

Linear, Time–Discrete, Time-Invariant Euclidean Setup

ideal model:

xt = Fxt−1 + vt, vt
indep.∼ (0,Q),

yt = Zxt + εt, εt
indep.∼ (0,V),

x0 ∼ (a0,Q),

{vt}, {εt}, x0 indep. as processes

(hyper–parameters Z known, F,Q,V to be estimated)

Generalizations also covered

• non-linear SSM’s (by Extended K.F., Unscented K.F.)
• time-varying Ft,Qt,Vt depending on time-inv. param. θ
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Algorithms for Filtering and Parameter Fitting

Filter/Smoothing Problem (for known hyp.-param.’s)

E
∣∣xi − ft(y1:j)

∣∣2 = minft
!, with y1:j = (y1, . . . , yj), y1:0 := ∅

class. solution: Kalman–Filter and –Smoother— Kalman[60]

optimal among linear [Gaussian setting: among all] filters & smoothers:

Initialization: x0|0 = a0

Prediction: xi|i−1 = Fxi−1|i−1, [∆xi = xi − xi|i−1]

Correction: xi|i = xi|i−1 + M0
i ∆yi, [∆yi = yi − Zixi|i−1]

Smoothing: xi|T = xi|i + Ji(xi+1|T − xi|i), [Ji = Σi|iF
τΣ−1

i|i−1]

+ corresp. recursions for predict-/filter-/smoothing error cov.’s Σi|i[−1],Σi|T and Kalman gain M0
i

route: Init.→ “forward-loop” = {Prediction, Correction} →
→ “backward-loop” = Smoothing
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Algorithms for Filtering and Parameter Fitting

EM-Algorithm for SSM (unknown hyp.-param.’s)

application of EM-Algo to SSMs (with Xt as missings) by Shumway/Stoffer[82];
improvements by several authors since, see Durbin/Koopman[01].

Initialization: get initial estimators for F,Q,V ,
e.g. by moment-type-estimator

E–Step: reconstruct unobserved states by Kalman filter and smoother

M–Step: parameter estimation, e.g. by (conditional) ML estimator

route: Init.→ “EM-loop” = {E–Step, M–Step}

11



Elements of Extreme Value Statistics

two settings — consider
(a) block maxima or (b) exceedances over some threshold

(a) Fisher-Tippett-Gnedenko Theorem:
possible limit distributions of max(Xi) have

cdf Hθ(x) = exp(−(1 + ξ(x − µ)/β)−1/ξ) (GEVD [= Gen. Extreme Value Distrib.])

(b) Pickands-Balkema-de Haan Theorem:
possible limit distr. of threshold exceedances have

cdf Fθ(x) = 1− (1 + ξ(x − µ)/β)−1/ξ (GPD [= Gen. Pareto Distrib.])

• FTG-Thm ⇐⇒ PBdH-Thm

• linked by same Parameter θ = (ξ, β, µ)τ :
– shape ξ (≥ 0) (tail behavior)
– scale β
– location/threshold µ (≤ x)
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Interplay of SSM and EVT

• basic extreme value theorems cover i.i.d. situation

• in a dynamic, time-dependent setting:
use concept of extremal index
see Embrechts et al.[97]

– non-parametric approach: is 1/limiting mean cluster size
– compare Drees[03,08], Janßen/Drees[13], Janßen[10], ERCIM 13

here: dynamics captured by SSM
extremes modeled in the i.i.d. innovations

thus: flexible, parametric DGP to study inter-arrival times of
exceedances (—not only in the limit)

13



Outliers

• Outliers and extremes – a contradiction? Dell’Aquila/Embrechts[06]

• What makes an obs. an outlier? (—and not a regular extreme)

– occur rarely (usually, 5%–10%)

– uncontrollable, from unknown distr. (may vary obs.-wise), unpredictable
– have no predictive power
– usually: no error-free separation from ideal obs.

• In dynamic setting

exogenous outliers affecting only singular observations

AO :: εre
t ∼ (1− rAO)L(εid

t ) + rAOL(εdi
t )

SO :: yre
t ∼ (1− rSO)L(y id

t ) + rSOL(ydi
t )

endogenous outliers / structural changes
IO :: ξre

t ∼ (1− rIO)L(ξid
t ) + rIOL(ξdi

t )

but also trends, level shifts
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Robustness

component-wise robustification to tackle outlier issue

• Init-EM: use robust autocovariances, see Higham[02], S.[10]

• E-Step-EM: use rLS-Filter (Ruckdeschel[01,10]),
i.e., in Corr., replace M0

i ∆yi by Hbi
(M0

i ∆yi), Hb(x) = x min{1,b/|x|}

use rLS-Smoother (Ruckdeschel, S., Pupashenko[14]),
i.e., in Smooth., replace Ji(xi+1|T − xi|i) by Hb̃i

(Ji(xi+1|T − xi|i))

• M-Step-EM: use robust multiv. regression and scale est.’s

(see Croux/Joossens[08], Agullo et al.[08], ERCIM 10)

. . . work in progress—soon some more on this . . .

• EVT: use optimally-robust RMXEs to fit GPD, GEVD (Ruckdeschel/Horbenko

[12,13]); extends and improves, a.o. Hosking et al.[85]
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Real Data Set

• daily average discharge data of Danube river in [m3/s]

• location: gauge at Donauwörth (see initial pictures)

• start: 1923-11-01, end: 2008-12-31 (> 30,000 days)

• currently collected and provided by

Hochwassernachrichtendienst (HND),
Bayerisches Landesamt für Umwelt (LfU)
[translated: =̂ Flooding news service by the Bavarian Environmental Office]

• provided to us by G. Laaha within project “Robust Risk
Estimation”
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Model Specification

• the original data y\t is first detrended and deseasonalized
by moving averages to series yt according to Reiß and Thomas[07] ,
i.e., with yearly trend mt and yearly season st , y\t = mt + st + yt

• robust trend/season extraction: c.f. Fried et al.[07]
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Model Specification

• the original data y\t is first detrended and deseasonalized
by moving averages to series yt according to Reiß and Thomas[07] ,
i.e., with yearly trend mt and yearly season st , y\t = mt + st + yt

• robust trend/season extraction: c.f. Fried et al.[07]

• for simplicity, assume an AR(4)-model for the yt ,
—model order chosen by BIAR/IWLS (Martin/Thomson[82]) &

ACM-type filter (Martin[79])
i.e., in SSM context with the usual embedding

Xt =


xt

xt−1
xt−2
xt−3

, F =


ϕ1 ϕ2 ϕ3 ϕ4
1 0 0 0
0 1 0 0
0 0 1 0

, Q =


σ2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, V = 0, Zτ =


1
0
0
0


. . . entails that in M-Step-EM, we use standard robust MM regression lmrob

• to the tails of the obtained (filtered/smoothed) innovations vt|T fit a GPD model
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• robust trend/season extraction: c.f. Fried et al.[07]

• for simplicity, assume an AR(4)-model for the yt ,
—model order chosen by BIAR/IWLS (Martin/Thomson[82]) &

ACM-type filter (Martin[79])
i.e., in SSM context with the usual embedding

Xt =


xt

xt−1
xt−2
xt−3

, F =


ϕ1 ϕ2 ϕ3 ϕ4
1 0 0 0
0 1 0 0
0 0 1 0

, Q =


σ2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, V = 0, Zτ =


1
0
0
0


. . . entails that in M-Step-EM, we use standard robust MM regression lmrob

• to the tails of the obtained (filtered/smoothed) innovations vt|T fit a GPD model
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Effects of Filtering
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Fit Real Data to GPD-Model

• raw data
– threshold chosen with gpd.fitrange: 500

scale (SE) shape (SE)

MLE 125.68 (22.25) -0.1766 (0.1245)

RMXE 123.49 (23.00) -0.1289 (0.1810)

• with filtering
– AR(4)-param’s:

ϕ1 ϕ2 ϕ3 ϕ4 µ σ2

MLE 1.2804 -0.5692 0.1825 -0.0044 0.1949 1721

rob 1.3078 -0.4492 0.1640 -0.0660 -15.6647 137

– threshold chosen with gpd.fitrange: 250 (non-robust), 400 (robust)

scale (SE) shape (SE)

MLE 69.49 (17.62) -0.0551 (0.1892)

RMXE 151.42 (19.94) -0.0864 (0.1304)

for RMXE used functionality of -pkgs ROptEst, RobExtremes
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Tail and Fitted GPD on raw data
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Tail and Fitted GPD on filtered data
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IC-Plot
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Outlyingness of Extremes
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Outlyingness of Extremes II — True Effect?

Pegel im Donaugebiet:  Donauwörth / Donau

Vorhersage: keine | 12-Std.-Vorhersage | 2-Tage-Trend
Linien: keine | Meldestufen | Hochwassermarken | historische Ereignisse

Unsicherheitsbereich der Vorhersage( Erläuterung )
Vorhersage vom 04.10.14 06:00 Uhr (Publikation: 13:02 Uhr)
Letzter Messwert vom 05.10.14 19:45 Uhr: 70 cm

14.04.1994 Wasserstand: 577 cm
16.02.1990 Wasserstand: 553 cm
24.05.1999 Wasserstand: 552 cm
27.03.1988 Wasserstand: 544 cm
01.02.1982 Wasserstand: 543 cm

Zeitbereich auswählen:    

Datum von:   bis: 

  

  

Stammdaten | Wasserstand | Abfluss | Abflusstafel | Hochwassermarken | Mittel- / Höchstwerte
Gebietsdaten / Laufzeiten | Lagekarte / Bild | Jahrbuchseite

Darstellung in Tabellen-Form  | Druckversion

Wasserstands-Grafik Donauwörth / Donau http://www.hnd.bayern.de/pegel/wasserstand/peg...

1 von 1 2014-10-05 20:00
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Conclusion

• presented a flexible, param. dynamic model class for
hydrological extremes

• assessment of the inter-arrival distribution of extremes
• provided a step-by-step robustification
• evidence that robustification also enhances analysis of

extremes
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