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The Problem I

- Ranking is in western societies omnipresent, e.g. university
rankings, PISA, researcher

- SNP lists in genetic association studies

- Do we have appropriate statistical tools?

- At least, they do not use it, e.g. recently in Germany a
country-specific reading test (Knigge et al. 2012)

2 / 30



The Problem II I
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The Problem II II

Ok is: comparison against grand mean (Bund)
OK is: directional decisions (grand mean not under H0: must have
larger and smaller levels)
Ok is: state-specific variances. Notice the variance heterogeneity:
Berlin vs. BW. Guess why!
NOT Ok is: ni is missing (may be by SD/SEM)
NOT Ok is: percentiles, but t-test decision. What is really the effect
size? Are we really interested in a mean comparison? Look on
95th percentiles as criteria!
NOT Ok: are t-tests at level α
NOT Ok: missing of any criteria of relevance
NOT Ok: data presentation
NOT NOT NOT Ok: raw data not available
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Two real data examples with raw data I

- Many rankings published- no raw data available. But:
- Academic Performance Index (API) County List (Cal, 2013)

I Random selection of 17 CA counties in 2012; only primary schools

I Let us assume API → N(µi , σ
2
i )

I Notice: strong unbalancedness ni = 1, ...,69
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Two real data examples with raw data II
- Size of 4th leaf in rose clones (Debener, 2013 LUH)

I Even 159 clones. Multiple endpoints, but leaf size was selected
I Box-plot with raw data

I Let us also assume leafsize→ N(µi , σ
2
i )

I Notice: rather small sample sizes and strong unbalancedness
ni = 2,3,4,5 (ni = 1 were already removed)
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Two real data examples with raw data III

- Conclusions:
I Ranking/hit selection with k .... large dimension (100,...,10000)

I Even when assuming normal distribution, severe variance
heterogeneity occurs

I Two types of unbalancedness:

F by chance (no. rose clones),
F inherently by circumstances (county sizes)

I Aim: select the q top clones, counties, states,.... Namely:

i Are the schools in Piedmont county better than...,
ii Are the clones [C4,C19,C21,C22] the best? I.e. significant better

than...
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Two real data examples with raw data IV

I Ranking and selection approaches exist since the fiftiesl (before
MCP!). But their concern is correct selection probability. In
genetic association studies: contains the list 53, 49 or 47 genes?
Much more important is that the list contains the real genes-
reproducible!

I Comparison with THE best exists (Hsu (1992)) ... inappropriately
here

I To be honest: in the most hit/feature selection problems a few false
positives, e.g. q = 10 clones, instead of q = 8 true clones, are not
critical

I But: in the following you will see how serious the choice of test
statistics/ effect size is on the ranking list. Focus today
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New approaches for hit selection I
- P1: Subset selection procedure Gupta (1956)

I A subset is guaranteed with (1− α) to contain the best treatment(s)

I i : X̂i ≥ max(Xj − tk−1,ρ=0.5,df ,1−αMQR
√

2/n) (Hayter (2007))

I Using common variance estimator MQR , constant df and equal n

I I.e. hit list is proportional to the ranked mean values only
Method P1

- Which comparisons?
I Ranking /selection procedures use all pairwise comparisons

X̂ivs.X̂i′

or comparison against a control X̂ivs.X̂C

I Empirical comparison against grand mean (GM) is quite common,
see Figure German reading test
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New approaches for hit selection II
I Three arguments for comparison against grand mean:

1 only k comparisons
2 nGM is large, i.e. high power, stable procedure
3 fair comparison
4 natural comparison: ie. not Bavaria vs. Saxony, but Bavaria vs. Bund

I Focus on comparisons vs. GM today
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New approaches for hit selection III

- Difference or ratio effect size?
I Stats text books focus on difference-to ... as effect size µi − µi′

I An alternative is ratio-to ... as (unstandardized) effect size µi/µi′

I Arguments:
F easy (naturally) to interpret
F multiplicative
F scale-independent, ie percentage change
F µGM 6= 0 per definition
F (Notice, trouble with ratio-to µi/µ0 when ...

I Focus on ratio-to GM today

I Method P1a (modified subset selection): i : µi/µGM
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New approaches for hit selection IV
- Criteria?

I Confidence intervals instead of widely used p-values

I lower confidence limit includes effect size, i.e. µi/µi′ AND
uncertainty, i.e. MQR ,ni ,R, α

I simultaneous CI, i.e. taking the dimension q and their correlation
(comparison vs. GM) into account. MCP

I Selection rule: i : lsCIi > 1

I Focus on lsCI for µi/µGM today
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New approaches for hit selection V
- Method P2: lsCI for ratio-to-GM: simultaneous confidence

intervals for µi/µ0

ωi = ciµ/diµ

- ci and di are the i th row vector of C and D for numerator and
denominator

- Dunnett- (Dilba et al., 2004), Williams-(Hothorn and Dilba, 2010),
GM-type contrasts (Djira and Hothorn, 2009)

C =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



D =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 .
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New approaches for hit selection VI
- The simultaneous Fieller-type confidence intervals for ωi are the

solutions of the inequalities

T 2(ωi) =
L2(ωi)

S2
L(ωi )

≤ t2
q,ν,R(ω),1−α,

with the numerator

L(ωi) =
∑

ciY i − diωiY 0,

Notice, Sasabuchi’s trick of a linear form
- tq,ν,R(ω i ),1−α is a central q-variate t-distribution with ν degrees of

freedom and correlation matrix R(ωi) = [ρij ], where ρii ′ depend on
chi ,ni and on unknown ratios ωi : plug-in ML-estimators (Dilba
et al., 2006) Trick no. 2 ... P2

- The mratios R package (Dilba et al., 2007) can be used to make
inferences about ratios of parameters in the linear (mixed) model.
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Method P3: lsCI for ratio-to-GM assuming
heterogeneous variances I

- Modified test statistic T 2∗(ωi) = L2(ωi)/S2∗
L(ωi )

, where

S2∗L(ωi ) =
ω2

i
n0

S2
0 +

q∑
h=q+1−i

nh

ñ2
i

S2
h .

- T ∗(ωi) has an approximate t-distribution with approximate
Satterthwhaite-type ν
Under variance heterogeneity: both ν and R(ω) depend on the
unknown ratios ωi and the unknown variances σ2

i

- Hasler and Hothorn (2008) plug-in modification is available in the
R package mratios by the sci.ratioVH function ... textbfP3

- Alternatively, using a sandwich estimator for variance-covariance
matrix in the linear model (Herberich et al., 2010)
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MCP vs. grand mean as competitor to global ANOVA
F-test I

- Analyzing one-way layouts by F-test or Kruskal-Wallis test is
common (KW in WebSci 7294 times, for what?)

- Quadratic F-test can be replaced by max-test of linear contrasts
vs. grand mean (Konietschke et al. 2013)
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MCP vs. grand mean as competitor to global ANOVA
F-test II

- Power:
i) similar for least favorable configuration,
ii) larger or smaller for any alternatives

- sCI available

- easy modifications for unbalanced heteroscedastic data

- one-sided inference possible!
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Method P4: lsCI for ratio-to-GM for relative effect size I

- Non-parametric: HF
0 : F0 = ... = Fk formulated in terms of the

distribution functions
- Using relative effect size (Brunner and Munzel, 2000; Ryu and

Agresti, 2008):

p01 =

∫
F0dF1 = P(X01 < X11) + 0.5P(X01 = X11). (1)

- sCI: Konietschke and Hothorn (2012) Let R(0s)
sj denote the rank of

Xsj among all n0 + ns observations within the samples 0 and s.
- Variance heterogeneity occurs frequently; therefore a

Behrens-Fisher (BF) version is used
- The rank means can be used to estimate p0s

p̂0s =
1
n0

(
R

(0s)
s· −

ns + 1
2

)
.
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Method P4: lsCI for ratio-to-GM for relative effect size II

- Asymptotically
√

N(p̂1 − p1, . . . , p̂q − pq)
′ follows a central

multivariate normal distribution with expectation 0 and covariance
matrix VN , see for details Konietschke and Hothorn (2012).

- Effect size pi,GM is win probability Hayter (2013) I.e. Under
H0 : p = 0.5 under HA : p = 0 or p = 1

- Related approximate (1− α)100% one-sided lower simultaneous
confidence limits are (Method P4):[

p̂i − tq,ν,R,1−α
√

Si ;
]
, (2)
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P5: lsCI for ratios of relative effects I

- Just recently Konietschke et al.:
tests and CI for ratios of relative effect sizes
L(∗ωi) =

∑
cipi − diωipGM

- ...

- Used in the API example
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P6: lsCI for Cohen’s d I

- Cohen’s d is the parametric version of relative effect size

- Resampling CI for Cohen’s d available Kirby and Gerlanc (2013)

- ...

- Used in the API example
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Confusing: Cohen, relative effect size, t-tests? I
- Interpretation of mean differences µi − µj differs substantially from

relative effect size p01 = P(X01 < X11) + 0.5P(X01 = X11)

- First on population level, second on individual level:
probability of success for any subject receiving X with
respect to subjects in population Y Browne (2011)

- Hayter (2013) called it win prob. Kieser et al. 2012 used it
- Nice relationships between (p,n) t-test and p01 and its CI:
- Package WinProb (Kitsche 2014)
- Example 1:

PvalueToWin(0.05, 10, 10) to $ 0.75 [0.52, 0.93]$

assuming N(µi , σ
2)

- Notice, another view on the effect size p-value.
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Confusing: Cohen, relative effect size, t-tests? II

- Example 2:
X <- c(76, 57, 71, 57, 65, 64, 65, 64, 70, 59)
Y <- c(52, 53, 40, 58, 46)
WinPropRaw(x=X, y=Y, alpha=0.05, var.equal=FALSE,
alternative="greater")

t-Test 15 [8.08, ]

W=P[X>Y] 0.95 [0.807, ]

Odds of X being greater than Y:
W/(1-W) = 17.61 [4.19, ]

(Cohen d ... available soon)

- Effect size criteria: i) for population, ii) for any subject, iii) for future subject

- Before we discuss multiplicity adjustment, we should select a certain effect size and
motivate why!
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Analysis of the API example I

County n SD
SunolG 1 -

AlbanyCity 3 7.5
Piedmont 3 10.6

Dublin 6 36.9
Pleasanton 9 24.6

CastroValley 8 39.3
Fremont 28 58.8

No P1subset P1a hoGM P2 hetGM P3 Rank P4
1 1.123 Piedmo 1.047 Fremont 1.12 Piedmo 2.23 Piedmo
2 1.092 SunolG 1.038 Pleasa 1.08 AlbanyC 1.68 Pleasa
3 1.082 Pleasa 1.021 Piedmo 1.078 Pleasa 1.38 Dublin
4 1.075 AlbanyC 1.019 CastroV 1.05 Fremont 1.38 CastroV
5 1.072 Dublin 1.009 Dublin 1.038 CastroV 1.29 Fremont
6 1.068 CastroV - - 1.027 Dublin 1.21 AlamedaC

County Item
SunolG ni = 1

Fremont ni = 28, but common MQR
Piedmo no.1 ↑ µi/µGM , ↓ sdi , although ↓ ni

AlbanyC no. 4 µi/µGM , no.1 ↓ sdi , although ↓ ni
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Analysis of the API example II
Alternative measures:

No Cohen P6 win prob P5
1 1.194 Piedmo 0.81 Piedmo
2 - - 0.71 Pleasa
3 - - 0.61 Fremont
4 - - 0.60 Dublin
5 - - 0.60 CastroV
6 - - 0.59 AlbanyC

- Conclusions
I 5 or 6 counties are significantly better than the average
I Studentization seems to be fair, i.e. hit rank order depends on:

1 (unstandardized) effect size, here µi/µGM
2 group-specific variances si . Still in a complex way: df ,R
3 group-specific sample size ni
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Analysis of the API example III

- No clear answer: what is the most appropriate list of the bests

- My personal view: if data are not too far from Gaussian:
sCI for ratio-to-GM, Satterthwaite adjusted
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R Packages I

- multcomp ... for difference-to

- mratio ... for ratio-to

- MCPAN ... for log-normal distributed data

- SimComp ... for multiple endpoints

- WinProb ... effect sizes
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Take home message I

- Choice of an appropriate effect size is more important than
controlling probability of correct selection. This discussion is
under-representative!

- Most sCI numerically available

- Some R Packages available

- My proposal (if data are not too far from Gaussian):
sCI for ratio-to-GM, Satterthwaite adjusted

- See the dimensionlessness of ratios: rankings of
reading/math/language learning scores can be compared
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Take home message II

- Let us discuss on the appropriatness and interpretability of
win-probabilities in subject-related studies

- Even more complicated: data per pupil not only per school, i.e.
sub-sampling in mixed model

- Use balanced designs if possible. Avoid too small sample sizes
e.g. ni = 2,3

- A different look on hit selection

- Nowadays: FDR and gene lists. Sorry: Thema verfehlt!
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