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Adiposity vs CRP (C-Reactive Protein, Bochud et al, 2009)

→ COLAUS observational study (Lausanne, 2003-2006, n = 5362, 35-75 years)

→ adjustment for age, physical activity, regular alcohol consumption, current smoking,
hormone replacement therapy (for women)

→ beta regression coefficients (for one-unit increase Log2-CRP, 95% CI) :

response variable adjusted men women
BMI (kg/m2) no 0.92 (0.82 ;1.02) 1.44 (1.34 ;1.54)

yes 0.86 (0.77 ;0.96) 1.35 (1.25 ;1.44)
fat mass (kg) no 1.78 (1.60 ;1.96) 2.78 (2.59 ;2.97)

yes 1.50 (1.32 ;1.68) 2.52 (2.33 ;2.70)
lean mass (kg) no 0.56 (0.36 ;0.77) 0.57 (0.42 ;0.71)

yes 0.90 (0.69 ;1.11) 0.72 (0.59 ;0.86)

→ although strongly significant associations, not enough to infer a causal effect
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Mendelian Randomization (Katan, 1986)

→ technique of instrumental variables (IV) with genetic information as an instrument
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Surrogate instrument (Hernan and Robins, 2006)

→ U∗ is here a surrogate instrument for Z
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Method of instrumental variables

→ core assumptions about the instrument Z :

1. Z is independent from Y given X and U

→ no direct pathway from Z to Y

2. Z is independent from any confounder U

→ no indirect pathway from Z to Y other than via X

3. Z is (causally) correlated with X

→ 1+2 : untestable assumptions, judged based on subject matter knowledge

→ idea : use genetic information Z which is directly (specifically) responsible for X

→ note : genetic is in principle determined at birth (excluding reverse causation)

→ under core assumptions : one can test for a causal effect of X on Y by testing for
an association between Z and Y (using a classical test)
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The Wald method

• (linear) causal relationship between X and Y to be investigated :

Y = α+ βX + U + ε ��+γZ (1)

→ one actually has γ = 0 (assumption 1)

→ β would be the parameter of interest but cannot be consistently estimated
via least-squares with unknown confounders U

• (linear) relationship between Z and X which is assumed :

X = α1 + β1Z + U1 + ε1 (2)

→ regressing X on Z via least squares is the first step of the method

→ one obtains an estimate β̂1 of β1 as Z independent from U1 (assumption 2)
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The Wald method

• (linear) relationship between Z and Y which is assumed :

Y = α2 + β2Z + U2 + ε2 (3)

→ regressing Y on Z via least squares is the second step of the method

→ one obtains an estimate β̂2 of β2 as Z independent from U2 (assumption 2)

• plugging-in (2) into (1) yields :

Y = (α+ βα1) + ββ1Z + (βU1 + βε1 + U + ε) (4)

→ since Z is independent from U, U1 and U2 (assumption 2), one has
β2 = ββ1 and thus β = β2/β1, where β1 6= 0 (assumption 3)

→ let β̂IV = β̂2/β̂1 be the third step of the method (consistent estimate of β)
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Two-stage least squares

→ alternatively (equivalently), one can use two-stage least squares

1. fit via least squares :
X = α3 + β3Z + ε3 (5)

→ let X̂ = α̂3 + β̂3Z the fitted values of this first model

2. fit via least squares :
Y = α4 + β4X̂ + ε4 (6)

→ β̂4 (= β̂IV ) is a consistent IV-estimate of β

→ one can add further covariates, provided they are in both equations

→ one can use several instruments (satisfying the core assumptions) in first equation

→ confidence intervals should take into account uncertainty due to first stage
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Adiposity vs CRP (Bochud et al, 2009)

→ genetic instruments : genes rs7553007 and rs1805096

→ 3 possible values (from 0 to 2, number of alleles associated with lower CRP)

→ genetic score : rs7553007 + rs1805096 (5 possible values from 0 to 4)

→ BMI vs Log2-CRP :

instrument adjusted men women
none (OLS) no 0.92 (0.82 ;1.02) p < 0.001 1.44 (1.34 ;1.54) p < 0.001

yes 0.86 (0.77 ;0.96) p < 0.001 1.35 (1.25 ;1.44) p < 0.001
rs7553007 no 0.12 (−0.79 ;1.02) p = 0.80 1.22 (0.18 ;2.25) p = 0.02

yes 0.17 (−0.68 ;1.02) p = 0.70 1.29 (0.32 ;2.27) p = 0.01
rs1805096 no −0.41 (−6.56 ;5.75) p = 0.90 0.78 (−0.12 ;1.67) p = 0.09

yes 0.16 (−3.60 ;3.92) p = 0.93 0.70 (−0.17 ;1.57) p = 0.11
score no 0.04 (−1.12 ;1.20) p = 0.95 0.98 (0.32 ;1.63) p = 0.004

yes 0.14 (−0.90 ;1.18) p = 0.79 0.97 (0.34 ;1.60) p = 0.002

→ suggestion of causal effect of CRP on BMI for women, not for men !
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First stage regression
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Second stage regression (BMI vs CRP)
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Second stage regression (fat mass vs CRP)
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Second stage regression (lean mass vs CRP, negative control !)

13/28



Checking assumptions 1-2 via DAG (Didelez and Sheehan, 2007)
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Checking assumptions 1-2 via DAG (Didelez and Sheehan, 2007)
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Checking (understanding) the method via simulations (Bochud and Rousson, 2010)

→ all εj variables below were simulated as N(0, 1)

→ sample size : n = 100

→ five considered situations :

1. (causal effect without confounding, β = 1)
Z = ε1 ; X = Z + ε2 ; Y = X + ε3

2. (measurement errors, β = 1)
Z = ε1 ; Xtrue = Z + ε2 ; Ytrue = Xtrue + ε3 ; X = Xtrue + ε4 ; Y = Ytrue + ε5

3. (causal effect with confounding, β = 1)
Z = ε1 ; U = ε2 ; X = Z + U + ε3 ; Y = X + U + ε4

4. (no causal effect with confounding, β = 0)
Z = ε1 ; U = ε2 ; X = Z + U + ε3 ; Y = U + ε4

5. (reverse causation, β = 0)
Z = ε1 ; Y = ε2 ; X = Z + Y + ε3
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Simulation results
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Assumption 3 : the problematic of weak instruments

→ even if it formally holds, one has a weak instrument if small R2 in first regression

→ yields the following problems :

• bias of IV-estimate because E(A/B) 6= E(A)/E(B)

• huge variability of IV-estimate given by :

SE(β̂IV ) = SE

(
β̂2

β̂1

)
≈

√√√√SE2(β̂2)

β̂21
+
β̂22SE2(β̂1)

β̂41
−

2β̂2Cov(β̂1, β̂2)

β̂31

→ rule of thumb for sample size calculation : divide by R2 the sample size that
would be calculated in an observational study (to reach a given power) !

• non-normality (even bimodality !) of IV-estimate (Nelson and Startz, 1990)

→ rule of thumb to avoid these problems (with p instruments and n individuals) :

F =
n − p − 1

p
·

R2

1− R2 > 10

(Staiger and Stock, 1997 ; Stock, Wright and Yogo, 2002)
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Simulations (n = 25, 0.25Z instead of Z in design of Bochud and Rousson, 2010)
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What if causal effect not constant ?

→ since already different for men and women, our example suggests that the effect of
X on Y might not be constant for all individuals

→ specifically, this means that one has interactions in model (1)

→ under that setting, the IV-estimate converges towards a “local average causal
effect” (sometimes referred to as LATE in case of a treatment effect)

→ one needs however an additional “monotonicity assumption” (binary exposure)

→ in the case of a positive causal relationship between Z and X , this means that for
each individual, increasing Z will not decrease X

→ remember our equation (2) :

X = α1 + β1Z + U1 + ε1

→ monotonicity assumption will not hold if ε contains measurement errors (or if it is
not reproducible, cannot be explained by anything)

→ partly a philosophical assumption ! (Dawid, 2000)
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Binary instrument and binary exposure (Angrist, Imbens and Rubin, 1996)

→ context of a clinical trial with non-compliance :

• let Z the assigned treatment (Z = 0 for placebo, Z = 1 for new treatment)

• let X the actual treatment (X = 0 for placebo, X = 1 for new treatment)

→ we use the following terminology :

• complier : X = Z

• always-taker : X = 1 (whatever Z)

• never-taker : X = 0 (whatever Z)

• defier : X 6= Z

→ monotonicity assumption : there are no defiers

→ in that case, IV-estimate converges to average causal effect among compliers

→ however : compliers is not an identifiable (sometimes small) subset of individuals !
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Clinical trial with non-compliance

→ kind of ideal situation where the untestable assumptions may appear reasonable,
and where the instrument should not be weak

→ let U represent the fact to be complier, always-taker, never-taker or defier :

• let µij the mean outcome for individuals with Z = i and U = j

→ one has here i = 0, 1 and j = C ,A,N,D

→ assumption 1 : µ0j = µ1j for j = A,N

• let ωC , ωA, ωN and ωD the proportions of compliers, always-takers, never-takers
and defiers (such that : ωC + ωA + ωN + ωD = 1)

→ assumption 2 : same proportions for the two groups Z = 0 and Z = 1

→ assumption 3 : ωC > ωD (or at least ωC 6= ωD)

→ strong instrument if ωC is large, weak instrument of ωC is low
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Clinical trial with non-compliance

→ first regression :

• mean of X in group Z = 1 : ωC + ωA

• mean of X in group Z = 0 : ωD + ωA

• mean difference : β1 = ωC − ωD

→ β1 is the proportion of compliers if there are no defiers

→ second regression :

• mean of Y in group Z = 1 : ωCµ1C + ωAµ1A + ωNµ1N + ωDµ1D

• mean of Y in group Z = 0 : ωCµ0C + ωAµ0A + ωNµ0N + ωDµ0D

• mean difference : β2 = ωC (µ1C − µ0C ) + ωD(µ1D − µ0D)

→ β2 is the parameter which is estimated by the intention-to-treat estimate

→ core assumptions : the IV-estimate converges to :

β2

β1
=
ωC (µ1C − µ0C ) + ωD(µ1D − µ0D)

ωC − ωD

→ monotonicity assumption : without defiers (ωD = 0), β2/β1 = µ1C − µ0C
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Mendelian randomization with binary outcome (Vuistiner et al, 2012)

→ variables :

• X : alcohol consumption (1=yes, 0=no)

• Y : hypertension (1=yes, 0=no)

• Z : absence of a protective allele in one marker of ALDH2 gene (1=yes, 0=no),
supposed to be responsible for a decrease in alcohol consumption

→ (reconstructed) data :

Z = 0 Z = 1
X = 0 X = 1 X = 0 X = 1

Y = 0 188 444 50 456
Y = 1 108 284 40 430

U C or N A N C or A

→ confounded (as-treated) estimate :
β̂AT = 284+430

284+430+444+456−
108+40

108+40+188+50 = 0.44−0.38 = 0.06 (95% CI : [0.00; 0.11])
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Mendelian randomization with binary outcome (Vuistiner et al, 2012)

→ estimations :

• ω̂A = 444+284
444+284+188+108 = 0.71

• ω̂N = 50+40
50+40+456+430 = 0.09

• ω̂C = β̂1 = (1− 0.09)− 0.71 = 0.20

• β̂ITT = β̂2 = 40+430
40+430+50+456 −

108+284
108+284+188+444 = 0.48− 0.38 = 0.10

(95% CI : [0.06; 0.14])

• β̂IV = β̂2/β̂1 = 0.10
0.20 = 0.50 (95% CI : [0.27; 0.74])

→ some more estimations :

• µ̂0A = µ̂1A = 284
284+444 = 0.39

• µ̂1CA := ω̂C µ̂1C+ω̂Aµ̂1A
ω̂C+ω̂A

= 430
430+456 = 0.49

• µ̂1C = (ω̂C+ω̂A)µ̂1CA−ω̂Aµ̂1A
ω̂C

= (0.20+0.71)0.49−0.71·0.39
0.20 = 0.83

• µ̂0N = µ̂1N = 40
40+50 = 0.44

• µ̂0CN := ω̂C µ̂0C+ω̂N µ̂0N
ω̂C+ω̂N

= 108
108+188 = 0.36

• µ̂0C = (ω̂C+ω̂N )µ̂0CN−ω̂N µ̂0N
ω̂C

= (0.20+0.09)0.36−0.09·0.44
0.20 = 0.33
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Causal odds-ratio among compliers (Lui and Chang, 2010)

→ can be defined and estimated as follows :

ORIV =
µ1C (1− µ0C )

µ0C (1− µ1C )
ÔR IV =

µ̂1C (1− µ̂0C )

µ̂0C (1− µ̂1C )

→ our example :

• IV-estimate :

ÔR IV =
0.83(1− 0.33)
0.33(1− 0.83)

= 9.97 (95% CI : [2.09; 47.42])

• ITT-estimate :

ÔR ITT =
0.48(1− 0.38)
0.38(1− 0.48)

= 1.50 (95% CI : [1.25; 1.79])

• confounded (as-treated) estimate :

ÔRAT =
0.44(1− 0.38)
0.38(1− 0.44)

= 1.28 (95% CI : [1.02; 1.60])
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Some conclusions

→ Mendelian randomization : technique of instrumental variables with genetic
information as an instrument

→ goal : estimate a causal effect rather than a mere association

→ smart (and desirable) idea rising new problems :

• unverifiable assumptions

• weak instruments (low power, causality less interesting with few compliers)

• extension to binary outcome (odds-ratio) problematic with continuous exposure

→ interesting : these problems largely disappear for a clinical trial with non-compliance

→ kind of paradox : while the original goal of Mendelian randomization was to
improve inference in observational studies, trying to get “closer to” clinical trials in this
regard, it can be used at the end to further improve inference in clinical trials

→ clinical trials thus remain a gold standard to assess causal inference !
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