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Big Data and Statistics

Challenge: how to extract useful and useable knowledge from the
overwhelming amount of raw data.

This is at the core of statistical inference:

the objective of statistical methods is the reduction of data. A quantity of
data. . . is to be replaced by relatively few quantities which shall
adequately represent. . . the relevant information contained in the original
data

Fisher (1922): “On the mathematical foundations of theoretical statistics”
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Regression

High-level objective is to model F (Y |X): this is a difficult problem

Standard Approach: Linear Regression
Focus on first two moments

Yi = β0 +

p∑
j=1

βjXij + εi , i = 1, . . . , n

E(Yi ) = β0 +

p∑
j=1

βjXij , var(Yi ) = σ
2, or σ2(Xij)

Estimation via OLS or GLS
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Linear Model

Y = Xβ+ ε

E(ε) = 0, var(ε) = σ2In, or var(ε) = Σy |x

If

the signal/information is in the first two moments and

the model is general enough, i.e. includes polynomial terms,
interactions, etc

then OLS/GLS regression can be a very effective modeling/predictive tool
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A ...simple example

X ∼ N10(0, I10), i.e. 10 independent standard normal predictors

Generate 200 observations for each Xj , j = 1, . . . , 10.

I have generated Y from a model that I will reveal later

Want to predict Y using Xj ’s: where to start?

Let’s plot the data
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Marginal Plots
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What model to fit?

Looks like Y is a non-linear function of (at least) X1 and X2

One could start from

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2

+ β6x3 + β7x4 + . . .+ β13x10 + ε

With p moderately large modeling is challenging: very difficult to
visualize how Y changes as a function of the components of X

Is this the final model?
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Model Selection

Stepwise Regression with R2, R2
adj , AIC/BIC, Cp

All Subset Regression with R2, R2
adj , AIC/BIC, Cp

Penalized Regression, e.g. LASSO

min
β

n∑
i=1

(yi − β0 −

p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj |

All are constrained by the starting model

Unknown effect of all the data processing (e.g. inducing collinearity?)
on the validity of inference (confidence intervals, tests of hypotheses,
predictions)
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Feature Extraction

X = (X1, . . . ,Xp)

If all we needed to model Y is α ′X, i.e. a few (< p) linear
combinations of the X ’s

Then we would plot Y versus α ′X and modeling would be much
simpler

This idea has been around for a long time: Principal Component
Regression (PCR) and variants–Ridge and PLS Regression

Let’s apply PCR to our example
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The scree plot
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Marginal Plots for the PCs
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Alternatively: Sliced Inverse Regression

Using the dr package in R:

s1=dr(y~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,method="sir")

summary(s1)

Method:

sir with 14 slices, n = 200.

Large-sample Marginal Dimension Tests:

Stat df p.value

0D vs >= 1D 304.73 130 4.441e-16

1D vs >= 2D 113.33 108 3.439e-01

2D vs >= 3D 78.15 88 7.647e-01

3D vs >= 4D 53.88 70 9.232e-01

SIR estimates the dimension to be 1!
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SIR estimates the linear function needed to model Y . What next?

0
1
0

2
0

3
0

4
0

SIR1

Y

Plot y versus the SIR predictor

Model y as a quadratic function of this new predictor
SIR1
summary(lm(y~SIR1+SIR1sq))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.24427 0.05719 161.64 <2e-16 ***

SIR1 -8.61903 0.04360 -197.69 <2e-16 ***

SIR1sq 1.95772 0.03008 65.09 <2e-16 ***

Residual standard error: 0.6485 on 197 degrees of freedom

Multiple R-squared: 0.9951, Adjusted R-squared: 0.9951

F-statistic: 2.01e+04 on 2 and 197 DF, p-value: < 2.2e-16
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Summary

Truth: Y = (X1 + X2 + 3)2 + .5N(0, 1)

Dimension is 1: a single linear function, X1 + X2, is needed to model
Y

SIR identified that this is a 1-dimensional problem and estimated
α ′X that can replace X in the regression of Y on X

The complexity of modeling Y has been drastically reduced

Much easier to accurately specify the model
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Singular Value Decomposition

Y = Xβ+ ε

var(X) = Σx = VΛV ′ : p × p

V = (v1, . . . ,vp)

Λ =


λ1 0 · · · 0
0 λ2 0 · · ·
...

...
. . .

...
0 · · · 0 λp


var(X) = Σx =

∑p
j=1 λjvjv

′
j , λ1 ≥ λ2 ≥ . . . ≥ λp > 0

Σ−1
x =

∑p
j=1

1
λj
vjv

′
j : p × p

cov(X,Y ) = σxy : p × 1
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Parameter Estimators

OLS: βOLS = Σ−1
x σxy

PCR: βPCR = Σ−1
x (M)σxy , M ≤ p

Ridge: βRR = (Σx + κIp)
−1σxy

PLS: βPLS = ΣD
x (u)σxy

ΣD
x (u) = Wu(W

′
uΣxWu)

−1W ′
u

Wu = (σxy ,Σxσxy , . . . ,Σ
u
xσxy )
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Eigen-representation of the estimators

var(X) = Σx =

p∑
j=1

λjvjv
′
j

Untargeted

OLS: βOLS =
∑p

j=1
1
λj
vjv

′
jσxy

PCR: βPCR =
∑M

j=1
1
λj
vjv

′
jσxy , M ≤ p

Ridge: βRR =
∑p

j=1
1

λj+κ
vjv

′
jσxy

Targeted

PLS: βPLS =
∑u

j=1
1
λj
vjv

′
jσxy

Summation is only over first u eigenvalues that satisfy v ′
jσxy 6= 0

If an eigenvalue has multiplicity r > 1, only one eigenvector among the
r is chosen
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Connection with SDR

PC starts with the eigen-decomposition of var(X) then selects
directions with the maximal variance of X

PLS starts with targeted eigen-decomposition of var(X) using the
correlation of X with Y as ordering principle.

SIR (a linear SDR method) uses the eigen-decomposition of
var(E(X|Y )) with E(X|Y ) as ordering principle

Why is that a good idea?
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var(X) = var[E(X|Y )] + E[var(X|Y )]

For simplicity, assume Y is categorical: X|Y is the restriction of X in
the class defined by Y

Signal: var[E(X|Y )] is between group variation in X

Noise: E[var(X|Y )] is within group variation

PCR mixes up noise and signal when extracting PCs

PLS produces ordering of eigen-components according to their
importance to cov(X,Y ), i.e. captures linear dependence of X and Y

SIR produces ordering of eigen-components according to their
importance to Y , linear and non-linear
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Linear Sufficient Dimension Reduction

Linear Sufficient Dimension Reduction (SDR) finds α with

F (Y |X) = F (Y |α ′X)

That is, SDR targets Y to find

α ′X = (α ′1X, . . . ,α
′
dX)

that can replace X in the regression of Y on X

Sliced Inverse Regression (SIR) (Li 1991) is one such method
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SIR

How to find the reduction R(X) = α ′X with α = (α1, . . . ,αd) : p × d ,
d < p?

Li (1991) was the first to observe that if E(X|α ′X) = A(α ′X) and
Σx = var(X), then

E(X|Y ) − E(X) ∈ Σx span(α)

Σ−1
x (E(X|Y ) − E(X))∈ span(α)

where span(α) is the column space of α
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How to find α?

Eaton 1983: If Z is a random vector, then Z ∈ E(Z) + span(Σz)
Let Z = E(X|Y ) to obtain,

E(X|Y ) − E(X) ∈ span((var(E(X|Y ))

Therefore,
Σ−1
x span(var(E(X|Y ))) ⊂ span(α)

To estimate α we need

an estimate of Σ−1
x

an estimate of var(E(X|Y )) and its rank
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Linear SDR in general

How can we identify span(α) ?

General Idea: find a kernel matrix M so that

S(M) ⊂ span(α)

SDR methods: different proposals for M

For example: In SIR, M = cov(E(X|Y ))
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Moment Based Linear SDR

Under F (Y |X) = F (Y |αTX)

Linearity condition: E(X|αTX) is linear in αTX

Σ−1(cov(X|Y )) ⊆ span(α)

Linearity condition and constant variance cov(X|αTX)

span(Σ−1(cov(X|Y ) − Σ)) ⊆ span(α)
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Moment Based Linear SDR

SIR, PIR, PFC, MAVE, etc: First Moment of X|Y

SAVE, SIRII, pHd, DR, etc: First and Second Moment X|Y

Most existing Linear SDR methods are based on moments of X|Y
and very often are not exhaustive

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 27 / 58



Sufficient Dimension Reduction in General

Let R : Rp → Rd with d ≤ p = dim(X), such that

F (Y |X) = F (Y |R(X))

R(X) is a sufficient reduction for the regression of Y on X: no
information about Y is lost when X is replaced by R(X)

The reduction in the complexity of the regression is

driven by Y
not restricted by the forward regression function, no model for the
response is needed
exhaustive
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Is Moment-Based SDR all that is needed?

Y Bernoulli with P(Y = 1) = P(Y = 0) = .5 and

(X|Y = y) ∼ Np

(
0, σ2(y)Ip = cy∆

)
where σ2(0) = 1 and σ2(1) = 10.

Let (X1,Y1), . . . , (Xn,Yn) be a sample from this model, where
n = 200 and p = 10.

Let’s apply linear dimension reduction methods such as SIR, SAVE,
DR and LAD to examine how well they perform in discriminating the
two populations

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 29 / 58



Linear SDR methods
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Is Moment-Based SDR good enough?

All perform badly.

But X does contain all discriminatory information!

What are we missing?
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Why Linear SDR is not enough?

Let’s consider (Y ,X) jointly normal. Then

Y |X ∼ N(µy + ΣyxΣ
−1
x (X− µx), σ

2
y − ΣyxΣ

−1
x Σ ′yx)

E(Y |X) = µy + ΣyxΣ
−1
x (X− µx) = α ′(X− µx), and var(Y |X) is

constant
Sufficient reduction is the scalar α ′X
Both OLS and SIR estimate the vector α
SIR always recovers the OLS predictor

When (Y ,X) not jointly normal but X|Y ∼ Np(µY ,∆), then

F (Y |X) = F (Y |α ′X)

and SIR (but not OLS) recovers the minimal sufficient reduction
R(X) = α ′X = (α ′1X, . . . ,α

′
dX)
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Non-linear SDR

Bura and Forzani (JASA 2015) introduced Non-linear Reductions in SDR:

When X|Y ∼ Np(µY ,∆Y ), then

R(X) =
(
α ′(X− µX ), (X− µX )

′Σ−1
x (X− µX )

)
The minimal sufficient reduction has a non-linear component

Same is true for elliptically contoured (heavy tailed distns):
X|Y ∼ ECp(µY ,∆, gY ) (Bura and Forzani 2015)

SIR and all other model-free SDR methods cannot recover the
non-linear component and cannot be exhaustive!
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Back to our simulation example

Y Bernoulli with P(Y = 1) = P(Y = 0) = .5 and

(X|Y = y) ∼ Np

(
0, σ2(y)Ip = cy∆

)
where σ2(0) = 1 and σ2(1) = 10.

Let (X1,Y1), . . . , (Xn,Yn) be a sample from this model, where
n = 200 and p = 10.
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Non-linear SDR
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Motivation for Non-linear SDR

We want to find the minimal sufficient reduction R(X) so that
F (Y|X) = F (Y|R(X))

Fact : F (Y |X) = F (Y |R(X) iff X|(R(X),Y )
d
= X|R(X)

Think of Y as a parameter and consider the distribution X|Y

Find the sufficient “statistic” R(X) for the “parameter” Y

R(X) is the function of X you need to characterize Y: If R(X) is a
sufficient statistic for the inverse regression X|Y then it is a sufficient
reduction for the forward regression Y |X.
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Model-based SDR

Assuming a model for X|Y removes the need for other assumptions

Reductions are exhaustive and not necessarily linear
We can derive their functional forms and how to estimate them
Different from RKHS-based methods (KSIR, GSIR, KDR, KCCA, etc)

Tool: Classic Sufficient Statistics Theory, e.g. Fisher’s factorization
theorem–if

f (x|y) = h(x)g(T(x), y)

then T(x) is sufficient for Y
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X|Y in the Exponential Family

Regressions with all continuous, all categorical, or mixtures of continuous
and categorical predictors

Natural family of distributions for X|Y is the exponential:

f (x|ηy ,Y = y) = eη
T
y T(x)−ψ(ηy )h(x)

Multivariate normal, gamma, exponential, Bernoulli, Poisson,
Dirichlet, multinomial, etc.

The natural “parameters”: ηy = (ηy1, . . . , ηyk)
T , k ≥ p.

T(x) is the minimal sufficient statistic for Y

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 38 / 58



X|Y in the Exponential Family

Regressions with all continuous, all categorical, or mixtures of continuous
and categorical predictors

Natural family of distributions for X|Y is the exponential:

f (x|ηy ,Y = y) = eη
T
y T(x)−ψ(ηy )h(x)

Multivariate normal, gamma, exponential, Bernoulli, Poisson,
Dirichlet, multinomial, etc.

The natural “parameters”: ηy = (ηy1, . . . , ηyk)
T , k ≥ p.

T(x) is the minimal sufficient statistic for Y

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 38 / 58



X|Y in the Exponential Family

Regressions with all continuous, all categorical, or mixtures of continuous
and categorical predictors

Natural family of distributions for X|Y is the exponential:

f (x|ηy ,Y = y) = eη
T
y T(x)−ψ(ηy )h(x)

Multivariate normal, gamma, exponential, Bernoulli, Poisson,
Dirichlet, multinomial, etc.

The natural “parameters”: ηy = (ηy1, . . . , ηyk)
T , k ≥ p.

T(x) is the minimal sufficient statistic for Y

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 38 / 58



X|Y in the Exponential Family

Regressions with all continuous, all categorical, or mixtures of continuous
and categorical predictors

Natural family of distributions for X|Y is the exponential:

f (x|ηy ,Y = y) = eη
T
y T(x)−ψ(ηy )h(x)

Multivariate normal, gamma, exponential, Bernoulli, Poisson,
Dirichlet, multinomial, etc.

The natural “parameters”: ηy = (ηy1, . . . , ηyk)
T , k ≥ p.

T(x) is the minimal sufficient statistic for Y

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 38 / 58



X|Y in the Exponential Family

Minimal Sufficient Reduction:

R(X) = αT (T(X) − E(T(X))

with
α = span{(ηY − EY (ηY ) = (ηY − η̄),Y ∈ SY }

To estimate R(X) we need to estimate the natural parameters ηY

(Bura, Duarte and Forzani 2015, to appear in JASA)
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Estimation via Generalized Linear Models

D : k × r , and fY ∈ Rr known functions of Y , so that

ηY = η̄+D(fY − f̄)

span(ηY − η̄) = span(D)

Obtain estimates of η̄ and D via Iterative Reweighted Least Squares
(IRLS estimates are MLEs)

d̂ , the estimate of the rank d of D, is obtained with asymptotic tests
or BIC/AIC

The first d̂ eigenvectors of D̂, α̂1, . . . , α̂d , yield the MLE of

R̂(X) = α̂
′(T(X) − T̄(X))

Regress Y on R̂(X)
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Application: Multivariate Bernoulli Predictors

In many data sets, predictors of a target variable are binary or
categorical

Examples include gene association studies, image processing, natural
language processing, social networks, spatial statistics

The multivariate Bernoulli distribution models potentially dependent
binary variables; a member of the exponential family

Regressions/classifications with multivariate Bernoulli predictors are
extensively used in machine learning/data mining
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Ising Model

The Ising model is an undirected graphical model that allows up to
pairwise interaction effects and it has been extensively used to model
multivariate binary data

The Ising probabibility function belongs to the exponential family
with natural parameter vector
ηy = (θ11(y), θ22(y), . . . , θpp(y), θ12(y), . . . , θp−1,p(y))

T , and
sufficient statistic

T(X) = (X1, . . . ,Xp,X1X2, . . . ,X1Xp, . . . ,Xp−1Xp)
T

both with p + p(p − 1)/2 elements
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Ising Distribution

Binary inverse predictors X1|Y , . . . ,Xp |Y , with Xj |Y ∈ {1, 0}, 1 ≤ j ≤ p,
with density function,

p(x1, . . . , xp |Y = y) =
1

Z (Θ(y))

exp

 p∑
j=1

θjj(y)xj +
∑

1≤j≤j ′≤p
θjj ′(y)xjxj ′


where Θ(y) = (θjj ′(y))p×p is a symmetric matrix specifying the network
structure. The partition function Z (θ(y)) ensures that the density
function is proper
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Natural Parameters

θjj(y): corresponds to the main effect for variable Xj |Y

θjj ′(y): corresponds to the interaction effect between variables Xj |Y
and Xj ′ |Y

θjj ′(y) = log
P(Xj = 1,Xj ′ = 1|X−j,−j ′ ,Y )P(Xj = 0,Xj ′ = 0|X−j,−j ′ ,Y )

P(Xj = 1,Xj ′ = 0|X−j,−j ′ ,Y )P(Xj = 0,Xj ′ = 1|X−j,−j ′ ,Y )

Xj and Xj ′ are conditionally independent given Y and all other
X-variables if and only if θjj ′(y) = 0
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Classification: Zoo data

101 animals classified into 7 categories: amphibian, bird, fish, insect,
invertebrate, mammal, and reptile

15 binary predictors were measured on each animal: hair, feathers,
eggs, milk, airborne, aquatic, predator, toothed, backbone, breathes,
venomous, fins, tail, domestic and cat-size

Objective: predict animal category
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Estimation via multivariate logistic regression

ηy = (θ11(y), θ22(y), . . . , θpp(y), θ12(y), . . . , θp−1,p(y))
T

Define

fyk = I (y = k) −
nk
n

for k = 1, . . . , r ,

r = 7−1 = 6, where 7 is the number of distinct values of the response

With n samples on Y and X, the multivariate GLM is

ηn = FnD̃

ηn = (θi(jj ′)) :n × (p + p(p − 1)/2) random matrix
Fn = (fil) = (fyi ,l): n × (r + 1) fixed matrix

D̃ = (clj), the (r + 1)× (p + p(p − 1)/2 matrix of coefficients

E. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 46 / 58



Estimation

Impossible to fit the full pairwise dependence Ising model: requires
the estimation of 7× 120 = 840 parameters with 101 observations

We assume that the Ising model is sparse; that is, that some natural
parameters θjj ′(y) are zero using the l1 penalties of Cheng et al.
(2012).

After screening for sparsity, 66 of the 120 terms of T(X) were
retained

Hair, airborne, predatory, venomous and domestic main effects; rest
are interactions
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SR1 vs SR2 under Dependence – EF-DR

Figure: EF-DR: SR1 vs SR2 under DependenceE. Bura (TU Wien) Sufficient Reductions in Regression and Classification 2017 48 / 58



Sufficient Plots under Independence (Cook and Li 2009)

(a) SR1 versus SR3 (b) SR1 versus SR6

(c) SR3 versus SR5
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Results

Our EF-DR Method (Dependence Model)

We plot the first two sufficient reductions: α̂
′
1(T(X) − T̄ (X)) versus

α̂
′
2(T(X) − T̄ (X))

Dimension is 2: all colors are separated by simple closed curves
Perfect in-sample classification

In contrast, the competing independence model requires 6 reductions
to classify the animals.

We also applied KDR (a RKHS method) with Gaussian kernel to the
Zoo data. Several KDR directions are needed to separate the seven
classes.
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Classification Accuracy

EF-DR KDR

d = 2

LDA 0.139 0.297

dQDA 0.158 0.257

d = 3

LDA 0.119 0.158

dQDA 0.109 0.139

Table: LDA and dQDA misclassification errors
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Simulation

Y ∼ N(0, 0.5)

Given Y , X = (X1, . . . ,Xp)
T is Bernoulli with pairwise correlation

structure among contiguous pairs as follows, (X1,X2),
(X3,X4), . . . , (Xp−1,Xp), and all other interactions of all orders are
zero.

Therefore, ηY = (θ11, θ22, . . . , θpp, θ12, θ34, . . . , θ(p−1)p).

T(X) = (X1,X2, . . . ,Xp,X1X2,X3X4, . . . ,Xp−1Xp).

The natural parameter ηY is generated as

ηY = ACT (fY − EfY )

where C = 1, fY = Y .

For p = 4, A = (1, 1, 1, 1, 10, 10)T/
√

204, and for p > 4, we set
A5 = . . . = Ap = 0, so that, for all p, the minimal sufficient reduction
is [(X1 − E(X1)) + (X2 − E(X2)) + (X3 − E(X3)) + (X4 − E(X4)) +
10(X1X2 − E(X1X2)) + 10(X3X4 − E(X3X4))]/

√
204.
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Three models:

(a) assuming the true correlation structure;
(b) assuming the X components are independent given Y , which is Cook

and Li’s (2009) approach; and
(c) assuming that all pairwise interactions are present as in the full Ising

model.

Accuracy: the maximum angle between the true subspace spanned by
ηY − η̄, Y ∈ SY , and the estimated one.
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n = 100 n = 200 n = 300 n = 500 N

p = 4

(a) 35.12 (16.65) 26.29 (12.14) 21.94 (8.50) 17.49 (8.09) 100

(b) 43.69 (16.30) 39.29 (12.52) 37.64 (10.49) 37.19 (7.33) 100

(c) 45.81 (15.47) 41.12 (13.78) 30.95 (13.62) 29.56 (12.24) 100

p = 6

(a) 40.42 (12.10) 34.82 (13.15) 28.76 (16.96) 23.31 (13.24) 50

(b) 64.24 (15.84) 63.16 (23.91) 58.08 (25.59) 55.42 (30.12) 50

(c) 51.06 (14.56) 42.51 (13.25) 38.21 (13.78) 36.80 (12.89) 50

p = 10

(a) 50.38 (10.78) 40.43 (10.27) 33.97 (10.47) 28.84 (9.16) 50

(b) 75.23 (10.86) 72.16 (11.93) 73.14 (12.11) 74.45 (9.90) 50

(c) 57.12 (13.41) 55.63 (12.71) 50.22 (12.03) 47.01 (10.82) 50

Table: Mean angles and their standard deviations in parentheses between the true
and estimated subspaces
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Features of EF-DR

The EF-DR sufficient reductions

(1) are exhaustive,

(2) are linear functions of the sufficient statistics, which can be both
linear and nonlinear functions of the predictors,

(3) have explicit functional forms,

(4) their estimates are MLEs and hence efficient.

EF-DR also applies when the response and the predictors have a joint
exponential family distribution and the response is a vector
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Future Directions

Functional SDR

predictors and/or response are curves

SDR in Macro-forecasting
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