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Network meta-analysis 
 

 More than two treatments tested in combined trials (studies) 

 Need to combine direct and indirect evidence on treatment comparisons 
 

 

 Direct comparison:     Trials A vs B 

 Indirect comparison:  Trials A vs C and B vs C 
 

 Other names:  

Mixed-treatment comparisons (MTC) 

Mixed-treatment meta-analysis (MTM)
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Direct comparison (A vs B) 
Indirect comparison (via C) 

Example 1: 
Lu and Ades (2006)  
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                                 A 

C                                                ?      Indirect comparison 

(Placebo) 

                                             B 

 

Comparison Mean difference   
 (contrast) 
A vs C -0.34 
B vs C -0.19 
 
 

15.019.034.0  BCACAB MDMDMD  
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Combining direct and indirect evidence 
 
 Inverse variance method 
 Each estimate of mean difference (MD) is ‘weighted’ by the inverse of its 

variance 
 This leads to a ‘mixed’ result: 
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 (Georgia Salanti, Workshop Zurich 2011)
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Parallels with multi-environment trials (MET) in crop science 
 

 Incomplete genotype  environment trials  

(treatments = genotypes, environments = trials, studies) 

 Interested in genotype means across environments 

 Heterogeneity between environments  genotype-environment interaction 

 Modelling variance-covariance structure for heterogeneity  
 variance-covariance structures for genotype-environment interaction 
 variances and covariances not constant between genotypes 
 stability analysis, analysis of phenotypic stability 

 
 Also similar to incomplete block designs 
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Disclaimer 
 
I am staying entirely in a frequentist framework! 
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Two modelling approaches 
 
(1) Contrast-based models 
 
 relative treatment effects compared to baseline (log relative risk, log 

odds ratio, mean difference)  
 models for contrasts with baseline 

 
 
(2) Arm-based models  
 
 absolute treatment effects (log risk, log odds, treatment means) 
 two-way ANOVA models for factors trial and treatment 
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2.1 Contrast-based approach 
 
Linear predictors for two treatments A and B 
 
A = baseline treatment 

B = new medication 

 
A:     

B: ABd    

 
  = baseline effect for the trial 

ABd  = effect of treatment B compared to baseline A
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Linear predictors for three treatments A, B and C 
 
(1) When A is baseline (A vs B and A vs C trials) 
 
A:     

B: ABd    

C: ACd    

 
(2) When B is baseline (B vs C trials) 
 
B:     

C: BCd    
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Basic parameters and functional parameters  

 

Basic parameters:  ABd , ACd   
 

Functional parameters:    ABACBC ddd   
 

 

(2) When B is baseline (B vs C trials) 
 
B:     

C: ABAC dd     
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The linear predictor for the k-th treatment in the i-th trial is given by 

 kiibikiik U       

where  

i   = baseline parameter in the i-th trial  

 = expected value of the baseline treatment  ib  in the i-th trial 

 kiib   = random effect of treatment k versus baseline  ib  in the i-th trial  

 
 








ibk
ibk

Uik ,0
,1

                                                           (Lu & Ades, 2006)
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Random effects for baseline contrasts: 

    kibkiib dE    

 kibd  = treatment effects to be estimated across trials 

 

Fixed effects-part of the model:  

   kibikiik dUE   .  
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Heterogeneity between trials  

 Variance-covariance structure for  kiib  
in i-th trial, e.g. 

 

        2/var 2
11    ininkiib JI  

 
where  
 

nI   = n-dimensional identity matrix 

nJ   = n  n matrix of ones 
2   = a variance component for between-trial heterogeneity  

 in   = number of treatments in the i-th trial  
                                     (Higgins & Whitehead, 1996; Lu & Ades, 2004) 



2. Modelling individual patient data 

BOKU, IASC, Wien, 12 March 2018  Hans-Peter Piepho 16 

 

Conditionally on the linear predictor, the observation ijky  on the j-th 
individual in the i-th trial for the k-th treatment has expected value  
 

     kiibkiibijk gyE  1|   

where  .g  is a suitable link function 

 

 Generalized linear mixed model (GLMM) 

 use (e.g.) adaptive Gaussian quadrature (Pinheiro & Bates, 1995) 
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2.2 Arm-based approach 

An alternative linear predictor 

ikkiik u    

where  

i  = fixed main effect of the i-th trial,  

k  = main effect of the k-th treatment, and  

iku  = random effect associated with ik   

 

  kiikE    
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Variance-covariance structure for heterogeneity 

 

Let iu  = vector of random effects iku for the i-th trial  

 

Then 

 

  0iuE  and  

  iiu var  
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2.3 Relation between contrast-based and arm-based model 

 

ikkiik u   

 

         kiibikiiibikibkiibibiik Uuuu    
 

        iibibii u                 ikibkkiib u~ 
 

where 

 iibikik uuu ~   and        ibkkibkiib dE     

 ib  = baseline treatment in i-th trial 
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Re-parameterized model has random effects: 

 

 iibu  and   iibikik uuu ~
 

  ibk   

 

Transition from arm-based model to contrast-based model: 

 

Conditioning on  iibu !! 

 

 baseline treatment has no variance in i-th trial 
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Let  

 iu  = vector of random effects iku for the i-th trial  

 iu~  = vector of random effects iku~  for the i-th trial 

   iiu var  and (without loss of generality)   1ib  

 

Then 
 

  T
iiiii DDu  ~~var  

 

where     111  inini ID  is the matrix generating all contrasts relative to 

the baseline treatment in the i-th trial 
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Examples for variance-covariance structure of iu~  
 

Constant variance model: 

 
2
uini I         2

11
~

uinini JI     
 

Diagonal model: 

 22
2

2
1 ,...,,diag ni      2

11
22

3
2
2 ,...,,diag~   nni J  

 

Factor-analytic model (one factor): 
T

i  , where  ,..., 21  T   T
i  ~~~   with  ,...,~

1312  T
 

 

Unstructured model:  

Maximum   2/1ii nn  free parameters for i
~  
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Implement conditional model for i
~

 via unconditional model for i  

 iibikik uuu ~   



n

k
ikikik uxu

1

~
 

 
Example 1: Smoking cessation data 
 

                        Dummy variables 
 Baseline treatment Treatment 1ix  2ix  3ix  4ix  
 
 A A 0 0 0 0 
  B 1 1 0 0 
  C 1 0 1 0 
  D 1 0 0 1 
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                        Dummy variables 
 Baseline treatment Treatment 1ix  2ix  3ix  4ix  
 
 B A 1 1 0 0 
  B 0 0 0 0 
  C 0 1 1 0 
  D 0 1 0 1 
 
 C A 1 0 1 0 
  B 0 1 1 0 
  C 0 0 0 0 
  D 0 0 1 1 
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2.4 Equivalence of conditional and unconditional model 

Conditional model: 

  iii u  ~0|var 1 , where  ,..., 21 ii
T
i    and   1ib  

Unconditional model: 

  ii var   

Both models are equivalent in the sense that for any contrast i
Tc    

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   
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Equivalence (continued) 
 

     iT
i

T
i

T
ii

T cccccuc  var~0|var 1   

 

To see this, let  TT ccc 21 , , where 1c  is the first element of c and 2c  is 

the remainder. Then      TT
i

TT
iii

T
i

T
i

T cccccDDccccc 21212222 ,,~~0   .
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Equivalence (continued) 

 Models fully equivalent with identity link and normal distribution 

 Models not equivalent with other link functions and distributions 

 
 
Example 1: 
 
 Smoking cessation data 

 Changed baseline treatment in some trials 

 Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS) 

  
2
uini I         2

11
~

uinini JI     
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Table 1: Smoking cessation data (Example 1)  
   Standard 
          Estimate  error 
            

Baseline contrasts using original baseline treatments (A) 
 

ABd  0.4192       0.2959 

ACd  0.7407       0.1738  

ADd  0.9484       0.3292 
 
Baseline contrasts taking B as baseline treatment in trials 3-5 
 

ABd  0.4415       0.2982 

ACd  0.7449       0.1751  

ADd  0.9580       0.3315 
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Table 1: Smoking cessation data (Example 1 continued)  
   Standard 
          Estimate  error 
 

Baseline contrasts (2) taking C as baseline treatment in trials 6-15 
 

ABd  0.4407       0.3154 

ACd  0.7773       0.1868  

ADd  0.9821       0.3493 
 
Two-way model estimates  
 

AB    0.3865    0.2387   

AC    0.7166    0.1374   

AD                                      0.9199    0.2720   
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Table 2: Smoking cessation data (Example 1 continued); constant variance 
model for uij 
   Standard 
          Estimate  error 
 

Adjusted means $ 
 

  A  -2.4235 a  0.1107 

 B  -2.0366 ab  0.2106 

 C  -1.7068 b 0.0971 

 D  -1.5047 b  0.2273 
 
$ Adjusted means (computed on the logit scale) followed by a common letter 
are not significantly different at %5  according to a Wald-test. 
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Table 3: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Diagonal (treatment-specific variance): 
 

 
2

1u  0.5599       0.2626 365.91 

 
2

2u  0 -   

 
2

3u  0 -   

 
2

4u  0.1292       0.2411   
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Table 4: Analysis of smoking cessation data based on two-way model.  
 

  Standard 
Parameter Estimate error AIC 
 

Constant variance: 
 

2
u  0.09068      0.02810 391.20 

 

Factor-analytic: 
 

1    0.4969       0.1736 364.02 

2  0      -  

3   -0.2423 0.1157  

4   0.05856       0.1985   
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Fitting the two-way ANOVA model with SAS 
 
proc glimmix data=a maxopt=100  
             method=quad(qpoints=6); 
class trial trt;  
model m/n = trial trt / ddfm=none solution chisq; 
random trt*trial; 
lsmeans trt / pdiff lines; 
run; 
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Fitting the FA model with SAS 
 
proc glimmix data=a maxopt=100  
             method=quad(qpoints=6); 
class trial trt;  
model m/n = trial trt  
                      / ddfm=none solution chisq; 
random trt / sub=trial type=fa1(1); 
lsmeans trt / pdiff lines; 
run; 
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2.5 Trial effects fixed or random? 
 

Trial effects fixed 
 
 Inference based on within-trial information 
 Inference protected by randomization 
 Obeys principle of concurrent control (Stephen Senn, 2010) 
 Can only assess relative treatment effects 

 
Trial effects random 
 
 Recovery of inter-trial information 
 Need to assume that trials in NMA are random sample 
 Can also assess absolute treatment effects 
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Recent discussion on arm-based (AB) versus contrast-based (CB) models 
 
 The discussion focusses much on estimation of relative treatment effects 

(CB) versus absolute treatment effects (AB) 
 I think this becomes a non-issue when a trial main effect is included in 

the AB model 
 The main issue is whether or not to recover the inter-trial information, 

i.e. whether the trial main effect is taken as fixed or random 
 
Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of 
trial data (Commentary). Research Synthesis Methods 7, 23-28. 
 
Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a 
Bayesian missing data framework for generalized multiple outcome mixed 
treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis 
Methods 7, 29-33. 



3. Treatment summaries and contrasts thereof 

BOKU, IASC, Wien, 12 March 2018  Hans-Peter Piepho 37 

 

Table 5: Summary measures analysis (empirical logits) for smoking cessation 
data (REML) (Example 1). We assumed  

2
uini I   for heterogeneity under 

the two-way model. This is equivalent to fitting      2
11

~
uinini JI    for 

the baseline-contrast model.   
 
    Estimable function    Standard 
Baseline           Two-way  Estimate  error 
contrasts §       model § 
 

ABd  AB    0.3978    0.3305 

ACd  AC    0.7013    0.1972  

ADd  AD    0.8642    0.3749 
 
§ Results are identical for both analyses    Piepho et al. (2012)
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Table 5 (continued)  
 
               Contrast    Standard 
Baseline           Two-way  Estimate  error 
contrasts          model  
 

                                              Adjusted means $ 
- 

  A   -2.3792 a 0.1553 

-  B  -1.9815 ab 0.2886 

-  C  -1.6779 b 0.1352 

-  D  -1.5150 b 0.3100 
 
$ Adjusted means followed by a common letter are not significantly different 
at %5  according to a t-test using the Kenward-Roger (1997) method for 
approximating the denominator degrees of freedom and variance adjustments 
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Take home message up to here 
 

Compared:  

 Contrast-based model (conditional)      kiibikiik U    

 Arm-based model (unconditional)             ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Contrast-based model is not invariant to choice of baseline!



4. Testing inconsistency 

BOKU, IASC, Wien, 12 March 2018  Hans-Peter Piepho 40 

 

Example 

 Trial network with three treatments (A, B, C)  

 Three types of trial: A vs B, A vs C and B vs C  

 Consider evidence on B vs C 

 Need to combine direct and indirect evidence on treatment comparisons 

Direct comparison:     Trials B vs C 

Indirect comparison:  Trials A vs B and A vs C 

 Inconsistency (incoherence):  

 direct and indirect comparisons for B vs C do not agree 
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Extending the notion of inconsistency 

 Comparison of direct and indirect evidence on a contrast  

 Presence of a new treatment in a trial may well modify the direct 

difference between A and B (Lu et al., 2011)  

 need to also compare direct comparisons from different types of trial 

 

Idea 

 Test interaction in trial type  treatment classification 
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Model to test for inconsistency 
 

  ijkjkkijjijk u    

j  = fixed main effect for the j-th trial type (design) 

  jk  = fixed effect for the interaction jk-th trial type  treatment  

 

 Heterogeneity ijku  can be separated from inconsistency   jk  provided 

there are several trials per trial type (design) 

 Heterogeneity is a property of variation among trials within the same trial 

type (design), while inconsistency affects variation between trial types 

 (Piepho, Madden and Williams, 2012, Biometrics)
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5.1 The bias problem illustrated 
 

ijjiij u   

 
Assume here: balanced data, normality 
 
Use: 
 
MSST = ANOVA mean square for the trial-by-treatment interaction  

MSE  = error mean square  

s = number of trials (studies) 

t = number of treatments 

n = number of replications 
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ML estimation of  iju uvar2   is biased: 
 

  
n

MSMSts EST
u




 11
2 11̂

   

 

By comparison, the ANOVA estimator is unbiased: 
 

n
MSMS EST

u


2̂   

 

  identical to REML when 0ˆ 2 u   

 

Bias problem with ML is potentially worse with unbalanced data and GLMMs  
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5.2 Alternatives to full ML 

 

 penalized quasi-likelihood (PQL)/pseudo-likelihood (PL)  

                  (Brewlow & Clayton 1993; O'Connell & Wolfinger 1993) 

 ML with random trial effects 

 REML-like modifications of ML 

 

                                                 (Piepho et al. 2018 Pharmaceutical Statistics) 

 



5. Estimation of variance components 

BOKU, IASC, Wien, 12 March 2018  Hans-Peter Piepho 46 

 

Pseudo-Likelihood (PL) 

 

 Linearization of GLMM by Taylor series expansion 

 Analysis of linearized model by residual ML (REML) 

 

 Expansion around X     RMPL       (M = marginal) 

 Expansion around ZuX    RSPL        (S = subject-specific) 

 

 

RMPL and RSPL are implemented in the GLIMMIX procedure of SAS 

                                                                  (O'Connell & Wolfinger 1993)
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ML with random trial effects i 

 

 
n

MSMSs EST
u




1
2 1̂    (balanced data, normal) 

 

Problem with unbalanced data and with GLMMs:  

 inter-trial information recovered 

 

Two ad hoc remedies to prevent recovery of inter-trial information: 

(1) fix  i  var2   at large value 

(2) estimate 2
u   assuming random trial effects, then take trial effects fixed
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A useful representation of REML as a modification of ML 

 

eZuXY    

 

where  

 

  and u  = fixed and random effects vectors;    Gu var  

X  and Z  = design matrices, and  

e  = vector of residual errors;   Re var   
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Re-write the model as 

 

uZXY ~~   

 

where  IZZ ~
 and  TTT euu ~ .  
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Equivalent form: 

 

   uZXXXXIXY TT ~~* 
   

 

where  

 

  uZXXX TT ~~* 
    

 

and M  denotes a g-inverse of M .  
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Now take *  as fixed: 

 

  *XYE    

  TKKYV   

 

where   TT XXXXIK 
  and RZGZT  .  
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Estimation of this model by ML is equivalent to the classic representation of 

REML as marginal ML for KY , where we maximize the likelihood for 

 TKKNKY ,0~ , which is synonymous with the likelihood for 

  TTT KKYXXXXNY 
 ,~ , which in turn is synonymous with ML for 

 TKKXNY ,~ *  profiled over *  choosing   YXXX TT 
*̂ . 

 

The important point to observe about this representation of REML is that by 

reducing the dimensionality of the random effects space (i.e., substitution of 

Z~  by ZK~ ), we effectively inflate the variance component estimates.  
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REML-like modification of ML for GLMM 

 

   ZuXguYE   1|  

 

where  

 

 .g  = link function and  

uY |    some distribution in the exponential family 

 

 This time, cannot include the residual error e in the random effects  
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But we can take the modification as far as this: 

 

     ZuXXXXIXguYE TT   **1|   

 

where   ZuXXX TT 
  ** .  

 

In this modification, we have replaced Z  by KZ  in a fashion analogous to 

REML in the normal case, thereby reducing the dimensionality of the random 

effects 
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Example 2: Diabetes data  (Elliot & Meyer, 2007, Lancet) 
 
 Incidence of diabetes with various antihypertensive drugs  
 Binomial response (cases/total counts) 
 6 treatments: 

ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker 
 21 studies 
 Data very incomplete 
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Table 6: Treatments tested in 21 studies of diabetes dataset. 
 

     Trial ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Treatment                      

ACE inhibitor x x x  x  x    x      x   x  

ARB        x        x    x   x 

CCB    x x  x        x x   x    x x 

Diuretic      x x     x  x  x   x    x   

Placebo        x x x x  x      x x x   

Beta-blocker x   x x     x   x x x x    x  
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5.3 Simulation study 
 

 Fit binomial GLMM with logit link using pseudo-likelihood (PL) 

 Simulate from fitted model (10,000 runs) 

 Assess: 

 bias and mean squared error (MSE) of parameter estimates  

 coverage probabilities of 95% confidence intervals for contrasts 
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Table 7: Simulation results for variance estimate 

Method Bias [× 10-2] MSE [× 10-4] 
Trial main effects i fixed 
ML      -4.582   22.188 
ML (KZ for Z)§      -0.1720     6.580 
RSPL       0.0124     6.629 
RMPL      -0.2635     5.754 
Trial main effect i random 
ML ( 42 10 )      -1.6100     6.853 

ML (i fixed for 
 estimating j 

     -1.5630     6.843 

§ REML-like modification of ML 
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Table 8: Simulation results for contrast 21    (A  B) 

Method Bias [× 10-2] MSE [× 10-4] Coverage (%) 
Trial main effects i fixed 
ML     0.06656     287.9     0.7945 
ML (KZ for Z)§    -0.00758     286.4     0.9437 
RSPL     0.04517     285.0     0.9467 
RMPL     0.05967     283.8     0.9436 
Trial main effect i random 
ML ( 42 10 )     0.00449     286.4     0.9102 

ML (i fixed for 
 estimating j 

    0.00716     286.1     0.9187 

§ REML-like modification of ML 
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Compared:  

 Contrast-based model (conditional)      kiibikiik U    

 Arm-based model (unconditional)             ikkiik u   
 

Full equivalence: 
 Summary data 
 Individual patient data with identity link and normal errors 
 

Very similar results: 
 All other cases 
 But: Contrast-based model is not invariant to choice of baseline! 
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 Arm-based (two-way ANOVA) model invariant to choice of baseline 
 

 Arm-based (two-way) model much easier to fit using standard software 
 

 Easy to fit two-way variance-covariance models for heterogeneity 
 

 Inconsistency = treatment x trial design interaction 
 

 PL/PQL & REML-like modification of ML are preferred methods for 
variance estimation 
 

 

Lesson for multi-environment variety trials: 
 

 Consider testing inconsistency in trials networks 
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Example 

 Trial network with three treatments (A, B, C)  

 Three types of trial: A vs B, A vs C and B vs C  

 Consider evidence on B vs C 

 Need to combine direct and indirect evidence on treatment comparisons 

Direct comparison:     Trials B vs C 

Indirect comparison:  Trials A vs B and A vs C 

 Inconsistency (incoherence):  

 direct and indirect comparisons for B vs C do not agree 
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Reasons for inconsistency 
 
 A new drug may be tested on a population of patients, for which a standard 

drug did not show a satisfactory effect. The effect relative to a placebo in 
such a selected population may differ from the effect in a population that 
is not selected in this way.  
 

 Inconsistency may also occur in open-label or imperfectly blinded trials 
(Lumley, 2002) 

 
 
Other term 
 
 Incoherence (Lumley, 2002)
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Inconsistency relation  

 Assume that B is baseline treatment in trials B vs C 

 Use functional parameter to model effect of C : 

ABACBC ddd   

 Modification in case of inconsistency : 

   ABCABACBC wddd        (inconsistency relation)  

 use this for treatment C in trials where B is baseline 

 If  ABCw  is significant, inconsistency is established 
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Loops 
 

Network forms a closed loop between A, B and C in an undirected graph with 

vertices corresponding to treatments and edges representing direct 

comparisons between treatments (Lu and Ades, 2006) 
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Undirected graph: Vertices = treatments 
 Edges = direct comparisons

(Dias et al., 2010) 

ABCw
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Using inconsistency factors is not easy! 

 Modeling and interpretation of inconsistency become more difficult in the 

presence of multi-arm trials, and fitting the model may require careful 

programming 

 The types of inconsistency that can be tested using inconsistency factors 

are not invariant to the choice of basic parameters 

 “… we have not managed to find a general formula of a mechanical routine to 

count [the number of independent consistency relations]” (Lu & Ades, 2006) 

 “In practice, an inconsistency model must be programmed very carefully, 

and the [number of independent inconsistencies] may have to be counted by 

hand.” (Lu & Ades, 2006) 
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Extending the notion of inconsistency 

 Comparison of direct and indirect evidence on a contrast  

 Presence of a new treatment in a trial may well modify the direct 

difference between A and B (Lu et al., 2011)  

 need to also compare direct comparisons from different types of trial 

 

Idea 

 Test interaction in trial type  treatment classification 
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Model to test for inconsistency 
 

  ijkjkkijjijk u    

j  = fixed main effect for the j-th trial type  

  jk  = fixed effect for the interaction jk-th trial type  treatment  

 

 Heterogeneity ijku  can be separated from inconsistency   jk  provided 

there are several trials per trial type (design) 

 Heterogeneity is a property of variation among trials within the same trial 

type, while inconsistency affects variation between trial types 

 (Piepho, Madden and Williams, 2012, Biometrics)
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3  X X 

 

Fig. 2: Trial type  treatment classification for network  
            {A vs B, A vs C, B vs C}. 
 

 3n  treatments  

 3m  trial types 

 6c  cells filled 

  11  mnc  d.f. for interaction trial type   treatment 
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 Treatment 
Trial type A B C 

1 X X X 
2 X X  

 

Fig. 3: Trial type  treatment classification for network  
            {A vs B vs C, A v. B}. 
 

 3n  treatments  

 2m  trial types 

 5c  cells filled 

  11  mnc  d.f. for interaction trial type   treatment
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 Treatment 
Trial type A B C 

1 X X  
2 X  X 
3 X X X 

 

Fig. 4: Trial type  treatment classification for network  
            {A vs B, A vs C, A vs B vs C}. 
 

 3n  treatments  

 3m  trial types 

 7c  cells filled 

  21 mnc  d.f. for interaction trial type   treatment  
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Example 3: 
 
 Diabetes study of Senn et al. (2013) 

 26 trials 

 15 different designs (one three-arm trial) 

 10 treatments, mostly involving glucose-lowering agent added to baseline 
sulfonylurea treatment 

 Continuous outcome: blood glucose change 
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Factor symbol Factor description 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 
 
 
 

Two-way ANOVA 
 

S  T = S + T + S.T 

 

Model for inconsistency 
 

(G/S)  T = G + G.S + T + G.T + G.S.T 

                            inconsistency      heterogeneity 
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Locating inconsistency by detachment of individual designs 

                                                                                   (Krahn et al. 2013) 

Factor symbol Factor description 
D1 D1 = 1 for design 1, D1 = 0 otherwise 
G Group of trials, trial type, design 
S Study, trial 
T Treatment 
 
 
 

(D1/G/S)  T = D1 + D1.G + D1.G.S + T + D1.T + D1.G.T + D1.G.S.T 

                                   detach design 1      inconsistency      heterogeneity 
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Effect G.S.T fixed 
Detachment Dk.T Inconsistency Dk.G.T 

Design Design 
no. (k) 

No. 
of 
trials 

D.f. 
for 
Dk.T Wald 

statistic 
p-value    Wald  

   statistic 
   p-value 

acar:plac 1 1 1 0.09 0.7699 22.45 0.0010 
acar:SUal 2 1 1 0.01 0.9091 22.52 0.0010 
metf:plac 4 3 1 0.46 0.4976 22.07 0.0012 
metf:acar:plac 5 1 2 0.15 0.9297 22.39 0.0004 
metf:SUal 6 1 1 15.02 0.0001 7.52 0.2758 
piog:plac 8 1 1 5.28 0.0215 17.25 0.0084 
piog:metf 9 1 1 5.40 0.0201 17.13 0.0088 
piog:rosi 10 1 1 0.05 0.8280 22.49 0.0010 
rosi:plac 11 6 1 6.24 0.0125 16.30 0.0122 
rosi:metf 12 2 1 0.01 0.9199 22.52 0.0010 
rosi:SUal 13 1 1 15.76 <0.0001 6.77 0.3424 
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Effect G.S.T random 
Detachment Dk.T Inconsistency Dk.G.T 

Design Design 
no. (k) 

No. 
of 
trials 

D.f. 
for 
Dk.T Wald 

statistic 
p-value    Wald    

   statistic 
   p-value 

acar:plac 1 1 1 0.02 0.8889 2.25 0.8782 
acar:SUal 2 1 1 0.01 0.9430 2.26 0.8765 
metf:plac 4 3 1 0.04 0.8379 2.22 0.8814 
metf:acar:plac 5 1 2 0.07 0.9634 2.18 0.8129 
metf:SUal 6 1 1 1.63 0.2343 0.92 0.9835 
piog:plac 8 1 1 0.43 0.5299 1.96 0.9062 
piog:metf 9 1 1 0.43 0.5318 1.94 0.9081 
piog:rosi 10 1 1 0.01 0.9065 2.27 0.8751 
rosi:plac 11 6 1 0.74 0.4112 1.87 0.9168 
rosi:metf 12 2 1 0.01 0.9276 2.25 0.8795 
rosi:SUal 13 1 1 1.79 0.2146 0.66 0.9930 
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Case-deletion plots and residual diagnostics 
 

(1) Fit model (G/S)  T and compute G.T means 

 

(2) Fit model G + T to G.T means 
 

 Drop a G.T mean and compute T means based on model G + T 

 Compute studentized residuals for G.T means from model G + T 
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Fig. 4: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design  treatment mean 
estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we 
prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G. 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 1  1 Acar  0.0785  0.1453 
   2 plac -0.0785 -0.1453 
 2  3 acar  0.0619  0.1056 
   4 SUal -0.0619 -0.1056 
 3  5 benf   .   . 
   6 plac   .   . 
 4  7 metf -0.0781 -0.2282 
   8 plac  0.0781  0.2282 
 5  9 acar -0.1507 -0.2601 
  10 metf  0.0036  0.0075 
  11 plac  0.1193  0.2273 
 6 12 metf  0.6095  1.1614 
  13 SUal -0.6095 -1.1614 
 7 14 migl   .   . 
  15 plac   .   . 
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G.S.T random Design Observation Treatment 

PRESS residual Studentized res. 
 8 16 piog -0.2802 -0.5585 
  17 plac  0.2802  0.5585 
 9 18 metf -0.2927 -0.5779 
  19 piog  0.2927  0.5779 
10 20 piog -0.0073 -0.0141 
 21 rosi  0.0073  0.0141 
11 22 plac -0.2100 -0.6391 
 23 rosi  0.2100  0.6391 
12 24 metf -0.0616 -0.1610 
 25 rosi  0.0616  0.1610 
13 26 rosi -0.6733 -1.2693 
 27 SUal  0.6733  1.2693 
14 28 plac   .   . 
 29 sita   .   . 
15 30 plac   .   . 
 31 vild   .   . 



4. Testing inconsistency 

BOKU, IASC, Wien, 12 March 2018  Hans-Peter Piepho 84 

 


