Arm-based network meta-analysis

Hans-Peter Piepho

Biostatistics Unit University of Hohenheim Stuttgart, Germany

Table of contents

- **1. Introduction**
- **2. Individual patient data: two modelling approaches**
- **3. Treatment summaries and contrasts thereof**
- **4. Testing consistency**
- **5. Estimation of variance components**
- **6. Summary**

Network meta-analysis

- More than two treatments tested in combined trials (studies)
- Need to combine direct and indirect evidence on treatment comparisons

- Direct comparison: Trials A vs B
- Indirect comparison: Trials A vs C and B vs C
- Other names:

Mixed-treatment comparisons (MTC)

Mixed-treatment meta-analysis (MTM)

Baseline	Study number	No contact (A)	Self-help (B)	Individual counseling (C)	Group counseling (D)	
$G_{(A)}$		9/140		23/140	10/138	Direct comparison (A vs B)
$G_{(B)}$	2		11/78	12/85	29/170	
$G_{(A)}$	3	79/702	77/694			Indirect comparison (via C)
	4	18/671	21/535			
	5	8/116	19/146			
	6 7	75/731		363/714		
		2/106		9/205		
	8	58/549		237/1,561		
	9	0/33		9/48		
	10	3/100		31/98		
	11	1/31		26/95		
	12	6/39		17/77		
	13 14	95/1,107 15/187		134/1,031 35/504		
	15	78/584		73/675		
	16	69/1,177		54/888		
	17	64/642		107/761		
	18	5/62		8/90		
	19	20/234		34/237		
	20	0/20			9/20	
$G_{(B)}$	21		20/49	16/43		
	22		7/66		32/127	Example 1:
$G_{(C)}$	23			12/76	20/74	Lu and Ades (2006)
	24			9/55	3/26	

Table 1. Smoking Cessation Rates (rik/nik) (Hasselblad 1998)

$$
MD_{AB} = MD_{AC} - MD_{BC} = -0.34 + 0.19 = -0.15
$$

Combining direct and indirect evidence

- Inverse variance method
- Each estimate of mean difference (MD) is 'weighted' by the inverse of its variance
- This leads to a 'mixed' result:

(Georgia Salanti, Workshop Zurich 2011)

Parallels with multi-environment trials (MET) in crop science

 \bullet Incomplete genotype \times environment trials

(treatments = genotypes, environments = trials, studies)

- Interested in genotype means across environments
- \bullet Heterogeneity between environments \Rightarrow genotype-environment interaction
- Modelling variance-covariance structure for heterogeneity \Rightarrow variance-covariance structures for genotype-environment interaction \Rightarrow variances and covariances not constant between genotypes \Rightarrow stability analysis, analysis of phenotypic stability
- Also similar to incomplete block designs

Disclaimer

I am staying entirely in a frequentist framework!

Two modelling approaches

(1) Contrast-based models

- \bullet relative treatment effects compared to baseline (log relative risk, log odds ratio, mean difference)
- models for contrasts with baseline

(2) Arm-based models

- absolute treatment effects (log risk, log odds, treatment means)
- two-way ANOVA models for factors trial and treatment

2.1 Contrast-based approach

Linear predictors for two treatments *A* **and** *B*

- A = baseline treatment
- B = new medication

A: $\eta = \mu$

B: $\eta = \mu + d_{\scriptscriptstyle AB}$

 μ = baseline effect for the trial

 $d_{\scriptscriptstyle AB}$ = effect of treatment B compared to baseline A

Linear predictors for three treatments A, B and C

(1) When A is baseline (A vs B and A vs C trials)

A: $\eta = \mu$

B: $\eta = \mu + d_{\scriptscriptstyle AB}$

C: $\eta = \mu + d$ _{AC}

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

C: $\eta = \mu + d_{BC}$

Basic parameters and functional parameters

Basic parameters:

$$
d_{_{AB}} ,\, d_{_{AC}}
$$

Functional parameters: *d BC* $= d$ _{*AC*} $-\,d_{\scriptscriptstyle AB}^{}$

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

$$
c: \eta = \mu + d_{AC} - d_{AB}
$$

The linear predictor for the k -th treatment in the i -th trial is given by

 $\eta_{ik} = \mu_i + U_{ik} \delta_i$ $\boldsymbol{v}_{ib(i)k}$

where

 μ_i $\,$ = baseline parameter in the i -th trial

= expected value of the baseline treatment $b(i)$ in the i -th trial

 $\delta_{ib(i)k}$ = random effect of treatment k versus baseline $b(i)$ in the i -th trial

$$
U_{ik} = \begin{cases} 1, & k \neq b(i) \\ 0, & k = b(i) \end{cases}
$$
 (Lu & Ades, 2006)

Random effects for baseline contrasts:

 $\left(\delta_{ib(i)k}\right) = d_{b(i)k}$ $E(\delta_{i_k(j_k)})=d$

d $b(i)k$ = treatment effects to be estimated across trials $\mathbf k$

Fixed effects-part of the model:

$$
E(\eta_{ik}) = \mu_i + U_{ik} d_{b(i)k}.
$$

Heterogeneity between trials

 \Rightarrow Variance-covariance structure for $\delta_{ib(i)k}$ in i -th trial, e.g.

$$
\text{var}\big\{\delta_{ib(i)k}\big\} = \big(I_{n(i)-1} + J_{n(i)-1}\big)\tau^2 / 2
$$

where

- I_n = *ⁿ*-dimensional identity matrix
- J_n = $n \times n$ matrix of ones
- τ^2 = a variance component for between-trial heterogeneity
- $n(i)\;$ = number of treatments in the i -th trial

(Higgins & Whitehead, 1996; Lu & Ades, 2004)

Conditionally on the linear predictor, the observation $\bm{\mathcal{Y}}_{ijk}$ on the j -th individual in the i -th trial for the k -th treatment has expected value

$$
E(y_{ijk} | \eta_{ib(i)k}) = g^{-1}(\eta_{ib(i)k})
$$

where $\,g(.)$ is a suitable link function

 \Rightarrow Generalized linear mixed model (GLMM)

 \Rightarrow use (e.g.) adaptive Gaussian quadrature (Pinheiro & Bates, 1995)

2.2 Arm-based approach

An alternative linear predictor

 $\eta_{ik} = \beta_i + \alpha_k + u_{ik}$

where

 β_i = fixed main effect of the i -th trial,

 α_k = main effect of the *k*-th treatment, and

 $u_{_{ik}}$ = random effect associated with $\eta_{_{ik}}$

$$
E(\eta_{ik}) = \beta_i + \alpha_k
$$

BOKU, IASC, Wien, 12 March 2018 **Hans-Peter Piepho** 17

Variance-covariance structure for heterogeneity

Let u_i = vector of random effects u_{ik} for the i -th trial

Then

 $\left(u_i^{}\right)$ $E(u_{_i})\!=\!0$ and $var(u_i) = \sum_i$

2.3 Relation between contrast-based and arm-based model

Re-parameterized model has random effects:

$$
u_{ib(i)}
$$
 and $\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} [k \neq b(i)]$

Transition from arm-based model to contrast-based model:

Conditioning on $u_{ib(i)}$!!

 \Rightarrow baseline treatment has no variance in i -th trial

Let

- u_i = vector of random effects u_{ik} for the *i*-th trial
- \widetilde{u}_i = vector of random effects \widetilde{u}_{ik} for the *i*-th trial
- \bullet • $\text{var}(u_i^{})\!=\!\Sigma_i^{}$ and (without loss of generality) $b(i)$ $=1$

Then

$$
\text{var}(\widetilde{u}_i) = \widetilde{\Sigma}_i = D_i \Sigma_i D_i^T
$$

where $D_i=\begin{pmatrix}-1_{n(i)-1} & I_{n(i)-1}\end{pmatrix}$ $D_i = (-1_{n(i)-1} \quad I_{n(i)-1})$ is the matrix generating all contrasts relative to

the baseline treatment in the *i*-th trial

 $\boldsymbol{\mathsf{Examples}}$ for variance-covariance structure of $\widetilde{\boldsymbol{\mathcal{u}}}_i$

Constant variance model:

 (i) $\Sigma_i = I_{n(i)} \sigma_u^2 \Rightarrow$ $\Rightarrow \widetilde{\Sigma}_i = (I_{n(i)-1} + J_{n(i)-1})\sigma_u^2$ $\widetilde{}$ $\Sigma_i = (I_{n(i)-1} + J_{n(i)-1})\sigma^2_{u_i}$

Diagonal model:

$$
\Sigma_i = \text{diag}\left(\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2\right) \Rightarrow \widetilde{\Sigma}_i = \text{diag}\left(\sigma_2^2, \sigma_3^2, \ldots, \sigma_n^2\right) + J_{n-1}\sigma_1^2
$$

Factor-analytic model (one factor):

$$
\Sigma_i = \lambda \lambda^T \text{ , where } \lambda^T = (\lambda_1, \lambda_2, \ldots) \Rightarrow \widetilde{\Sigma}_i = \widetilde{\lambda} \widetilde{\lambda}^T \text{ with } \widetilde{\lambda}^T = (\lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \ldots)
$$

Unstructured model:

Maximum
$$
n_i(n_i-1)/2
$$
 free parameters for $\widetilde{\Sigma}_i$

Implement conditional model for $\widetilde{\Sigma}_{i}$ via unconditional model for Σ_{i}

$$
\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} \implies \widetilde{u}_{ik} = \sum_{k=1}^{n} x_{ik} u_{ik}
$$

Example 1: Smoking cessation data

2.4 Equivalence of conditional and unconditional model

Conditional model:

$$
var(\eta_i | u_{i1}) = 0 \oplus \widetilde{\Sigma}_i
$$
, where $\eta_i^T = (\eta_{i1}, \eta_{i2}, \ldots)$ and $b(i) = 1$

Unconditional model:

 $var(\eta_i) = \Sigma_i$

Both models are equivalent in the sense that for any contrast $\,c^T \eta_{\it i} \,$

$$
\text{var}(c^T \eta_i \mid u_{i1}) = c^T \big(0 \oplus \widetilde{\Sigma}_i \big) c = c^T \Sigma_i c = \text{var}(c^T \eta_i)
$$

Equivalence (continued)

$$
\text{var}(c^T \eta_i \mid u_{i1}) = c^T \left(0 \oplus \widetilde{\Sigma}_i \right) c = c^T \Sigma_i c = \text{var}(c^T \eta_i)
$$

To see this, let $c^{\mathsf{T}} = \left(c_1^{}, c_2^{\mathsf{T}} \right)$, where $c_1^{}$ is the first element of c and $c_2^{}$ is $\bigg)$

the remainder. Then $c^T\Big(0\oplus\widetilde{\Sigma}_i\Big)c=c_2^T\widetilde{\Sigma}_ic_2=c_2^TD_i\Sigma_iD_i^Tc_2=\big(c_1,c_2^T\big)\!\Sigma_i\big(c_1,c_2^T\big)^{\!\!T}$ \int_i $\left(c_1, c_2^T\right)$ $P_i \Sigma_i D_i^T c_2 = (c_1, c_2^T)$ $_{i}c_{2} = c_{2}^{T}$ \int_c \int_c \int_c $c^T\left(0\oplus \widetilde{\Sigma}_i\right)c = c_2^T \widetilde{\Sigma}_i c_2 = c_2^T D_i \Sigma_i D_i^T c_2 = \left(c_1, c_2^T \right) \Sigma_i \left(c_1, c_2^T \right)^T\;.$

Equivalence (continued)

- Models fully equivalent with identity link and normal distribution
- Models not equivalent with other link functions and distributions

Example 1:

- Smoking cessation data
- Changed baseline treatment in some trials
- Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS)

$$
\bullet \ \Sigma_i = I_{n(i)} \sigma_u^2 \ \Rightarrow \ \widetilde{\Sigma}_i = \left(I_{n(i)-1} + J_{n(i)-1}\right) \sigma_u^2
$$

0.7449 0.1751

0.9580 0.3315

BOKU, IASC, Wien, 12 March 2018 **Figure 28** Hans-Peter Piepho 28

 d_{AD}

Table 2: Smoking cessation data (Example 1 continued); constant variance model for *uij*

\$ Adjusted means (computed on the logit scale) followed by a common letter are not significantly different at $\alpha=5\%$ according to a Wald-test.

Table 3: Analysis of smoking cessation data based on two-way model.

Table 4: Analysis of smoking cessation data based on two-way model.

Fitting the two-way ANOVA model with SAS

```
proc glimmix data=a maxopt
=100
              method=quad(qpoints=
6); 
class trial trt; model m/n = trial trt / ddfm=none solution chisq; 
random trt*trial; lsmeans trt / pdiff lines; 
run;
```
Fitting the FA model with SAS

```
proc glimmix data=a maxopt
=100
              method=quad(qpoints=
6); 
class trial trt; model m/n = trial trt 
                        / ddfm=none solution chisq; 
random trt / sub=trial type=fa1(
1); 
lsmeans trt / pdiff lines; 
run;
```
2.5 Trial effects fixed or random?

Trial effects fixed

- Inference based on within-trial information
- Inference protected by randomization
- Obeys principle of concurrent control (Stephen Senn, 2010)
- Can only assess *relative* treatment effects

Trial effects random

- Recovery of inter-trial information
- Need to assume that trials in NMA are random sample
- Can also assess *absolute* treatment effects

Recent discussion on arm-based (AB) versus contrast-based (CB) models

- The discussion focusses much on estimation of relative treatment effects (CB) versus absolute treatment effects (AB)
- I think this becomes a non-issue when a trial main effect is included in the AB model
- The main issue is whether or not to recover the inter-trial information, i.e. whether the trial main effect is taken as fixed or random

Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of trial data (Commentary). Research Synthesis Methods 7, 23-28.

Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis Methods 7, 29-33.
3. Treatment summaries and contrasts thereof

Table 5: Summary measures analysis (empirical logits) for smoking cessation data (REML) (Example 1). We assumed $\Sigma_{_{i}}=I_{_{n(i)}}\sigma_{_{u}}^{^{2}}$ for heterogeneity under the two-way model. This is equivalent to fitting $\widetilde{\Sigma}_{_i}=\bigl(I_{_{n(i)-1}}+J_{_{n(i)-1}}\bigr)\!\sigma_{_u}^{\,2}$ $\widetilde{\mathbf{u}}$ $\Sigma_{_i} = \bigl(I_{_{n(i)-1}} + J_{_{n(i)-1}} \bigr) \! \sigma_{_u}^{\scriptscriptstyle\cal Z}$ for the baseline-contrast model.

 ${\mathbb S}$ Results are identical for both analyses $\;\Rightarrow$ Piepho et al. (2012)

3. Treatment summaries and contrasts thereof

Table 5 (continued)

\$ Adjusted means followed by a common letter are not significantly different at α $=$ 5% according to a t-test using the Kenward-Roger (1997) method for approximating the denominator degrees of freedom and variance adjustments

3. Treatment summaries and contrasts thereof

Take home message up to here

Compared:

- Contrast-based model (conditional)
- Arm-based model (unconditional)

$$
\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}
$$

$$
\eta_{ik} = \beta_i + \alpha_k + \mu_{ik}
$$

Full equivalence:

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Contrast-based model is not invariant to choice of baseline!

Example

- Trial network with three treatments (*A*, *B*, *C*)
- Three types of trial: A vs B , A vs C and B vs C
- Consider evidence on *B* vs *C*
- Need to combine direct and indirect evidence on treatment comparisons Direct comparison: *B* vs *C* Indirect comparison: Trials A vs *B* and *A* vs *C*
- Inconsistency (incoherence):

 \Rightarrow direct and indirect comparisons for B vs C do not agree

Extending the notion of inconsistency

- Comparison of direct and indirect evidence on a contrast
- Presence of a new treatment in a trial may well modify the direct difference between *A* and *B* (Lu et al., 2011)

 \Rightarrow need to also compare direct comparisons from different types of trial

Idea

 \Rightarrow Test interaction in trial type \times treatment classification

Model to test for inconsistency

$$
\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}
$$

 δ_i δ _j = fixed main effect for the j-th trial type (design)

 $\big(\alpha\delta\big)_{jk}$ $\;$ = fixed effect for the interaction jk -th trial type \times treatment

- Heterogeneity $u_{ijk}^{}$ can be separated from inconsistency $\left(\alpha\delta\right)_{jk}^{}$ provided there are several trials per trial type (design)
- Heterogeneity is a property of variation among trials within the same trial type (design), while inconsistency affects variation between trial types (Piepho, Madden and Williams, 2012, *Biometrics*)

5.1 The bias problem illustrated

 $\eta_{ij} = \beta_i + \alpha_j + u_{ij}$

Assume here: balanced data, normality

Use:

 $M S_{ST}$ = ANOVA mean square for the trial-by-treatment interaction

- MS_E = error mean square
- *s* = number of trials (studies)
- *t* = number of treatments
- n = number of replications

ML estimation of $\sigma^2_u = \mathrm{var}(u_{\overline{i}j})$ σ_{ν}^2 = var(u_{ν}) is biased:

$$
\hat{\sigma}_u^2 = \frac{\left(1 - s^{-1}\right)\left(1 - t^{-1}\right)MS_{ST} - MS_E}{n}
$$

By comparison, the ANOVA estimator is unbiased:

$$
\hat{\sigma}_u^2 = \frac{MS_{ST} - MS_E}{n}
$$

 \Rightarrow identical to REML when $\hat{\sigma}$ $\hat{\sigma}^2 \geq 0$ $\hat{\sigma}_{\mu}^{2} \geq$

Bias problem with ML is potentially worse with unbalanced data and GLMMs

BOKU, IASC, Wien, 12 March 2018 **Hans-Peter Piepho** 44

- **5.2 Alternatives to full ML**
- \Rightarrow penalized quasi-likelihood (PQL)/pseudo-likelihood (PL)

(Brewlow & Clayton 1993; O'Connell & Wolfinger 1993)

- \Rightarrow ML with random trial effects
- \Rightarrow REML-like modifications of ML

(Piepho et al. 2018 *Pharmaceutical Statistics*)

Pseudo-Likelihood (PL)

- Linearization of GLMM by Taylor series expansion
- Analysis of linearized model by residual ML (REML)
- \Rightarrow Expansion around $X\beta$ \Rightarrow RMPL (M = marginal)
- \Rightarrow Expansion around $X\beta + Zu \Rightarrow$ RSPL (S = subject-specific)

RMPL and RSPL are implemented in the GLIMMIX procedure of SAS

(O'Connell & Wolfinger 1993)

ML with random trial effects β_i

$$
\hat{\sigma}_u^2 = \frac{\left(1 - s^{-1}\right)MS_{ST} - MS_E}{n}
$$
 (balanced data, normal)

Problem with unbalanced data and with GLMMs:

 \Rightarrow inter-trial information recovered

Two *ad hoc* remedies to prevent recovery of inter-trial information:

(1) fix
$$
\sigma_{\beta}^2 = \text{var}(\beta_i)
$$
 at large value

(2) estimate σ_u^2 $\,$ assuming random trial effects, then take trial effects fixed

A useful representation of REML as a modification of ML

 $Y = X\beta + Zu + e$

where

 β and u = fixed and random effects vectors; $\text{var}(u)$ $= G$

 X and Z = design matrices, and

 e = vector of residual errors; $\text{var}(e)$ $= R$

Re-write the model as

 $Y = X\beta + Z\tilde{u}$ $=X\beta+\widetilde{Z}\widetilde{u}$

where
$$
\widetilde{Z} = (Z \ I)
$$
 and $\widetilde{u}^T = (u^T \ e^T)$.

Equivalent form:

$$
Y = X\beta^* + \left(I - X\left(X^T X\right)^- X^T\right)\widetilde{Z}\widetilde{u}
$$

where

$$
\boldsymbol{\beta}^* = \boldsymbol{\beta} + \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-}\boldsymbol{X}^T\widetilde{Z}\widetilde{u}
$$

and $\,M^-\,$ denotes a g-inverse of $\,M\,$.

Now take β^* as fixed:

 $E[Y] = X\beta^*$ $V[Y] = K\Sigma K^{T}$

where
$$
K = (I - X(X^T X) X^T)
$$
 and $\Sigma = ZGZ^T + R$.

Estimation of this model by ML is equivalent to the classic representation of REML as marginal ML for *K Y* , where we maximize the likelihood for $KY\sim N\Big(0, K\Sigma K^T\Big)$, which is synonymous with the likelihood for $\bigg)$ $\Bigl(X \Bigl(X^T X \Bigr)$ $\left.\rule{0pt}{2.5pt}\right)$ $Y \sim N(X(X^TX)^\top X^TY, K\Sigma K^T)$ $\sim N[X(X^TX\, \top X^TY, K\Sigma K^T\,)$, which in turn is synonymous with ML for . $Y \sim N\Big(X\boldsymbol{\beta}^*, K\Sigma K^T\Big)$ $\bigg)$ $\left(\beta^{*},K\Sigma K^{T}\right)$ profiled over $\,\beta^{*}$ choosing $\,{\hat{\beta}^{*}=\,}\!\!\left(X^{T}X\right)$ *X X Y* T **v** Γ **v** T $=(X^TX)^T$ $\hat{\beta}^*$ $U = I \Lambda \Lambda I \Lambda I$.

The important point to observe about this representation of REML is that by reducing the dimensionality of the random effects space (i.e., substitution of *Z* $\widetilde{\mathsf{Z}}$ by $K\widetilde{\mathsf{Z}}$ \widetilde{Z}), we effectively inflate the variance component estimates.

REML-like modification of ML for GLMM

$$
E[Y \mid u] = g^{-1}[X\beta + Zu]
$$

where

 $g(.)$ = link function and

 $Y | u \sim$ some distribution in the exponential family

 \Rightarrow This time, cannot include the residual error e in the random effects

But we can take the modification as far as this:

$$
E[Y | u] = g^{-1} \Big[X \beta^{**} + \Big(I - X \Big(X^T X \Big)^{-} X^T \Big) Z u \Big]
$$

where
$$
\beta^{**} = \beta + (X^T X)^T X^T Z u
$$
.

In this modification, we have replaced *Z* by *KZ* in a fashion analogous to REML in the normal case, thereby reducing the dimensionality of the random effects

Example 2: Diabetes data (Elliot & Meyer, 2007, Lancet)

- Incidence of diabetes with various antihypertensive drugs
- Binomial response (cases/total counts)
- 6 treatments: ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker
- 21 studies
- Data very incomplete

Table 6: Treatments tested in 21 studies of diabetes dataset.

5.3 Simulation study

- Fit binomial GLMM with logit link using pseudo-likelihood (PL)
- Simulate from fitted model (10,000 runs)
- Assess:
	- \Rightarrow bias and mean squared error (MSE) of parameter estimates
	- \Rightarrow coverage probabilities of 95% confidence intervals for contrasts

Table 7: Simulation results for variance estimate

§ REML-like modification of ML

Table 8: Simulation results for contrast $\alpha_{\text{\tiny{l}}} - \alpha_{\text{\tiny{2}}}$ (A $-$ B)

§ REML-like modification of ML

6. Summary

 $\eta_{ik} = \mu_i + U_{ik} \delta_{ik}$

 $\eta_{ik} = \beta_i + \alpha_k + u_{ik}$

Compared:

- \bullet Contrast-based model (conditional) $\qquad \eta_{ik}$
- \bullet Arm-based model (unconditional) $\qquad \eta_{ik}$

Full equivalence:

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Contrast-based model is not invariant to choice of baseline!

6. Summary

- Arm-based (two-way ANOVA) model invariant to choice of baseline
- Arm-based (two-way) model much easier to fit using standard software
- Easy to fit two-way variance-covariance models for heterogeneity
- Inconsistency = treatment x trial design interaction
- PL/PQL & REML-like modification of ML are preferred methods for variance estimation

Lesson for multi-environment variety trials:

Consider testing inconsistency in trials networks

References:

Madden, L.V., Piepho, H.P., Paul, P.A. (2016): Models and methods for network meta-analysis. *Phytopathology* **106**, 792-806.

Piepho, H.P. (2014): Network-meta analysis made easy: Detection of inconsistency using factorial analysis-of-variance models. *BMC Medical Research Methodology* **14**, 61.

Piepho, H.P., Madden, L.V., Roger, J., Payne, R., Williams, E.R. (2018): Estimating the variance for heterogeneity in arm-based network meta-analysis. *Pharmaceutical Statistics* (forthcoming).

Piepho, H.P., Madden, L.V., Williams, E.R. (2015): Multiplicative interaction in network metaanalysis. *Statistics in Medicine* **34**, 582-594.

Piepho, H.P., Möhring, J., Schulz-Streeck, T., Ogutu, J.O. (2012): A stage-wise approach for analysis of multi-environment trials. *Biometrical Journal* **54**, 844-860.

Piepho, H.P., Williams, E.R., Madden, L.V. (2012): The use of two-way mixed models in multitreatment meta-analysis. *Biometrics* **68**, 1269-1277.

Thanks!

Example

- Trial network with three treatments (*A*, *B*, *C*)
- Three types of trial: A vs B , A vs C and B vs C
- Consider evidence on *B* vs *C*
- Need to combine direct and indirect evidence on treatment comparisons Direct comparison: *B* vs *C* Indirect comparison: Trials A vs *B* and *A* vs *C*
- Inconsistency (incoherence):

 \Rightarrow direct and indirect comparisons for B vs C do not agree

Reasons for inconsistency

- A new drug may be tested on a population of patients, for which a standard drug did not show a satisfactory effect. The effect relative to a placebo in such a selected population may differ from the effect in a population that is not selected in this way.
- Inconsistency may also occur in open-label or imperfectly blinded trials (Lumley, 2002)

Other term

Incoherence (Lumley, 2002)

Inconsistency relation

- Assume that *B* is baseline treatment in trials *B* vs C
- \bullet Use functional parameter to model effect of C :

 $d_{BC} = d_{AC} - d_{AB}$

Modification in case of inconsistency :

 $d_{BC} = d_{AC} - d_{AB} + w_{ABC}$ (inconsistency relation)

- \Rightarrow use this for treatment C in trials where B is baseline
- \bullet If $\;{w}_{ABC}\;$ is significant, inconsistency is established

Loops

Network forms a closed loop between *A*, *B* and *C* in an undirected graph with vertices corresponding to treatments and edges representing direct comparisons between treatments (Lu and Ades, 2006)

Using inconsistency factors is not easy!

- Modeling and interpretation of inconsistency become more difficult in the presence of multi-arm trials, and fitting the model may require careful programming
- The types of inconsistency that can be tested using inconsistency factors are not invariant to the choice of basic parameters
- "… we have not managed to find a general formula of a mechanical routine to count [the number of independent consistency relations]" (Lu & Ades, 2006)
- "In practice, an inconsistency model must be programmed very carefully, and the [number of independent inconsistencies] may have to be counted by hand." (Lu & Ades, 2006)

Extending the notion of inconsistency

- Comparison of direct and indirect evidence on a contrast
- Presence of a new treatment in a trial may well modify the direct difference between *A* and *B* (Lu et al., 2011)

 \Rightarrow need to also compare direct comparisons from different types of trial

Idea

 \Rightarrow Test interaction in trial type \times treatment classification

Model to test for inconsistency

$$
\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}
$$

 δ_i δ _{*j*} = fixed main effect for the *j*-th trial type

 $\big(\alpha\delta\big)_{jk}$ $\;$ = fixed effect for the interaction jk -th trial type \times treatment

- Heterogeneity $u_{ijk}^{}$ can be separated from inconsistency $\left(\alpha\delta\right)_{jk}^{}$ provided there are several trials per trial type (design)
- Heterogeneity is a property of variation among trials within the same trial type, while inconsistency affects variation between trial types

(Piepho, Madden and Williams, 2012, *Biometrics*)

Fig. 2: Trial type \times treatment classification for network { *A* vs *B*, *A* vs *C*, *B* vs *C*}.

- $n=3$ treatments
- $m=3$ trial types
- $\bullet\hspace{1mm} c=6\hspace{1mm}$ cells filled
- \Rightarrow $c-n-m+1=1$ d.f. for interaction trial type \times treatment

Fig. 3: Trial type \times treatment classification for network { *A* vs *B* vs *C*, *A* v. *B*}.

- $n=3$ treatments
- $m=2$ trial types
- $c = 5$ cells filled
- \Rightarrow c n m $+$ 1 $=$ $1\,$ d.f. for interaction trial type \times treatment

Fig. 4: Trial type \times treatment classification for network { *A* vs *B*, *A* vs *C*, *A* vs *B* vs *C*}.

- $n=3$ treatments
- $m=3$ trial types
- $c = 7$ cells filled
- \Rightarrow $c-n-m+1=2$ d.f. for interaction trial type \times treatment

Example 3:

- Diabetes study of Senn et al. (2013)
- 26 trials
- 15 different designs (one three-arm trial)
- 10 treatments, mostly involving glucose-lowering agent added to baseline sulfonylurea treatment
- Continuous outcome: blood glucose change

Two-way ANOVA

 $S \times T = S + T + S$.T

Model for inconsistency

$$
(G/S) \times T = G + G.S + T + G.T + G.S.T
$$

inconsistency heterogeneity

BOKU, IASC, Wien, 12 March 2018 **Figure 10 Automobile 10** Hans-Peter Piepho 76

Locating inconsistency by detachment of individual designs

(Krahn et al. 2013)

$$
(D1/G/S) \times T = D1 + D1.G + D1.G.S + T + D1.T + D1.G.T + D1.G.S.T
$$

detach design 1 *inconsistency heterogeneity*

Case-deletion plots and residual diagnostics

(1) Fit model (G/S) \times T and compute G.T means $^{\circ}$

```
(2) Fit model G + T to G. T means
```
 \Rightarrow Drop a G.T mean and compute T means based on model G + T

 \Rightarrow Compute studentized residuals for G.T means from model G + T

Fig. 4: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design × treatment mean estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G.

