Arm-based network meta-analysis

Hans-Peter Piepho

Biostatistics Unit University of Hohenheim Stuttgart, Germany

1

Table of contents

- 1. Introduction
- 2. Individual patient data: two modelling approaches
- 3. Treatment summaries and contrasts thereof
- 4. Testing consistency
- 5. Estimation of variance components
- 6. Summary

Network meta-analysis

- More than two treatments tested in combined trials (studies)
- Need to combine direct and indirect evidence on treatment comparisons

- Direct comparison: Trials A vs B
- Indirect comparison: Trials A vs C and B vs C
- Other names:

Mixed-treatment comparisons (MTC)

Mixed-treatment meta-analysis (MTM)

Baseline	Study number	No contact (A)	Self-help (B)	Individual counseling (C)	Group counseling (D)	
$G_{(A)}$	1	9/140		23/140	10/138	Direct comparison (A vs B)
G _(B)	2		11/78	12/85	29/170	Tuding at some anidon (via C)
$G_{(A)}$	3	79/702	77/694			Indirect comparison (via C)
	4	18/671	21/535			
	5	8/116	<u>19/146</u>			
	6	75/731		363/714		
	7	2/106		9/205		
	8	58/549		237/1,561		
	9	0/33		9/48		
	10	3/100		31/98		
	11	1/31		26/95		
	12	6/39		17/77		
	13	95/1,107		134/1,031		
	14	15/18/		35/504		
	15	78/584		/3/6/5		
	16	69/1,1//		54/888		
	1/	64/642		107/761		
	18	5/62		8/90		
	19	20/234		34/237	0./20	
	20	0/20			9/20	
$G_{(B)}$	21		20/49	16/43		
	22		7/66		32/127	Example 1:
$G_{(C)}$	23			12/76	20/74	$\frac{1}{2}$
	24			9/55	3/26	Lu ana Aaes (2000)

Indirect comparison

Comparison	Mean difference
	(contrast)
A vs C	-0.34
B vs C	-0.19

$$MD_{AB} = MD_{AC} - MD_{BC} = -0.34 + 0.19 = -0.15$$

Combining direct and indirect evidence

- Inverse variance method
- Each estimate of mean difference (MD) is 'weighted' by the inverse of its variance
- This leads to a 'mixed' result:

(Georgia Salanti, Workshop Zurich 2011)

Parallels with multi-environment trials (MET) in crop science

• Incomplete genotype × environment trials

(treatments = genotypes, environments = trials, studies)

- Interested in genotype means across environments
- Heterogeneity between environments \Rightarrow genotype-environment interaction
- Modelling variance-covariance structure for heterogeneity

 variance-covariance structures for genotype-environment interaction
 variances and covariances not constant between genotypes
 stability analysis, analysis of phenotypic stability
- Also similar to incomplete block designs

Disclaimer

I am staying entirely in a frequentist framework!

Two modelling approaches

(1) Contrast-based models

- relative treatment effects compared to baseline (log relative risk, log odds ratio, mean difference)
- models for contrasts with baseline

(2) Arm-based models

- absolute treatment effects (log risk, log odds, treatment means)
- two-way ANOVA models for factors trial and treatment

2.1 Contrast-based approach

Linear predictors for two treatments A and B

- A = baseline treatment
- B = new medication

A: $\eta = \mu$

B: $\eta = \mu + d_{AB}$

 $\mu\,$ = baseline effect for the trial

 d_{AB} = effect of treatment B compared to baseline A

Linear predictors for three treatments A, B and C

(1) When A is baseline (A vs B and A vs C trials)

A: $\eta = \mu$

B: $\eta = \mu + d_{AB}$

 $C: \eta = \mu + d_{AC}$

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

 $C: \eta = \mu + d_{BC}$

Basic parameters and functional parameters

Basic parameters:

$$d_{\scriptscriptstyle AB}$$
 , $d_{\scriptscriptstyle AC}$

Functional parameters: $d_{BC} = d_{AC} - d_{AB}$

(2) When B is baseline (B vs C trials)

B: $\eta = \mu$

$$C: \eta = \mu + d_{AC} - d_{AB}$$

The linear predictor for the k-th treatment in the i-th trial is given by

 $\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$

where

 μ_i = baseline parameter in the *i*-th trial

= expected value of the baseline treatment b(i) in the *i*-th trial

 $\delta_{ib(i)k}$ = random effect of treatment k versus baseline b(i) in the *i*-th trial

$$U_{ik} = \begin{cases} 1, & k \neq b(i) \\ 0, & k = b(i) \end{cases}$$
 (Lu & Ades, 2006)

Random effects for baseline contrasts:

 $E\left(\delta_{ib(i)k}\right) = d_{b(i)k}$

 $d_{b(i)k}$ = treatment effects to be estimated across trials

Fixed effects-part of the model:

$$E(\eta_{ik}) = \mu_i + U_{ik} d_{b(i)k}.$$

Heterogeneity between trials

 \Rightarrow Variance-covariance structure for $\delta_{ib(i)k}$ in *i*-th trial, e.g.

$$\operatorname{var}\left\{ \delta_{ib(i)k} \right\} = \left(I_{n(i)-1} + J_{n(i)-1} \right) \tau^2 / 2$$

where

- I_n = *n*-dimensional identity matrix
- $J_n = n \times n$ matrix of ones
- τ^2 = a variance component for between-trial heterogeneity
- n(i) = number of treatments in the *i*-th trial

(Higgins & Whitehead, 1996; Lu & Ades, 2004)

Conditionally on the linear predictor, the observation y_{ijk} on the *j*-th individual in the *i*-th trial for the *k*-th treatment has expected value

$$E(y_{ijk} \mid \eta_{ib(i)k}) = g^{-1}(\eta_{ib(i)k})$$

where g(.) is a suitable link function

 \Rightarrow Generalized linear mixed model (GLMM)

 \Rightarrow use (e.g.) adaptive Gaussian quadrature (Pinheiro & Bates, 1995)

2.2 Arm-based approach

An alternative linear predictor

 $\eta_{ik} = \beta_i + \alpha_k + u_{ik}$

where

 β_i = fixed main effect of the *i*-th trial,

 α_k = main effect of the k-th treatment, and

 u_{ik} = random effect associated with η_{ik}

$$E(\eta_{ik}) = \beta_i + \alpha_k$$

BOKU, IASC, Wien, 12 March 2018

Variance-covariance structure for heterogeneity

Let u_i = vector of random effects u_{ik} for the *i*-th trial

Then

 $E(u_i) = 0$ and $var(u_i) = \Sigma_i$

2.3 Relation between contrast-based and arm-based model

$$\begin{split} \eta_{ik} &= \beta_i + \alpha_k + u_{ik} \\ \eta_{ik} &= \beta_i + \alpha_{b(i)} + u_{ib(i)} + \alpha_k - \alpha_{b(i)} + u_{ik} - u_{ib(i)} = \mu_i + U_{ik} \delta_{ib(i)k} \\ \mu_i &= \beta_i + \alpha_{b(i)} + u_{ib(i)} \qquad \delta_{ib(i)k} = \alpha_k - \alpha_{b(i)} + \widetilde{u}_{ik} \\ \text{where} \\ \widetilde{u}_{ik} &= u_{ik} - u_{ib(i)} \quad \text{and} \quad E(\delta_{ib(i)k}) = d_{b(i)k} = \alpha_k - \alpha_{b(i)} \\ b(i) &= \text{baseline treatment in } i\text{-th trial} \end{split}$$

Re-parameterized model has random effects:

$$u_{ib(i)}$$
 and $\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} [k \neq b(i)]$

Transition from arm-based model to contrast-based model:

Conditioning on $u_{ib(i)}$!!

 \Rightarrow baseline treatment has no variance in *i*-th trial

Let

- u_i = vector of random effects u_{ik} for the *i*-th trial
- \widetilde{u}_i = vector of random effects \widetilde{u}_{ik} for the *i*-th trial
- $var(u_i) = \Sigma_i$ and (without loss of generality) b(i) = 1

Then

$$\operatorname{var}(\widetilde{u}_i) = \widetilde{\Sigma}_i = D_i \Sigma_i D_i^T$$

where $D_i = \begin{pmatrix} -1_{n(i)-1} & I_{n(i)-1} \end{pmatrix}$ is the matrix generating all contrasts relative to

the baseline treatment in the i-th trial

Examples for variance-covariance structure of \widetilde{u}_i

Constant variance model:

 $\Sigma_{i} = I_{n(i)} \sigma_{u}^{2} \implies \widetilde{\Sigma}_{i} = (I_{n(i)-1} + J_{n(i)-1}) \sigma_{u}^{2}$

Diagonal model:

$$\Sigma_{i} = \operatorname{diag}(\sigma_{1}^{2}, \sigma_{2}^{2}, ..., \sigma_{n}^{2}) \Rightarrow \widetilde{\Sigma}_{i} = \operatorname{diag}(\sigma_{2}^{2}, \sigma_{3}^{2}, ..., \sigma_{n}^{2}) + J_{n-1}\sigma_{1}^{2}$$

Factor-analytic model (one factor):

$$\Sigma_i = \lambda \lambda^T \text{ , where } \lambda^T = \left(\lambda_1, \lambda_2, \ldots\right) \Rightarrow \widetilde{\Sigma}_i = \widetilde{\lambda} \, \widetilde{\lambda}^T \text{ with } \widetilde{\lambda}^T = \left(\lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \ldots\right)$$

Unstructured model:

Maximum
$$n_i(n_i-1)/2$$
 free parameters for $\widetilde{\Sigma}_i$

Implement conditional model for $\widetilde{\Sigma}_i$ via unconditional model for Σ_i

$$\widetilde{u}_{ik} = u_{ik} - u_{ib(i)} \Rightarrow \widetilde{u}_{ik} = \sum_{k=1}^{n} x_{ik} u_{ik}$$

Example 1: Smoking cessation data

		Dummy variables			
Baseline treatment	Treatment	X_{i1}	x_{i2}	<i>x</i> _{<i>i</i>3}	X_{i4}
A	A	0	0	0	0
	В	-1	1	0	0
	С	-1	0	1	0
	D	-1	0	0	1

		Dummy variables			
Baseline treatment	Treatment	X_{i1}	X_{i2}	<i>x</i> _{<i>i</i>3}	x_{i4}
В	A	1	-1	0	0
	В	0	0	0	0
	С	0	-1	1	0
	D	0	-1	0	1
С	A	1	0	-1	0
	В	0	1	-1	0
	С	0	0	0	0
	D	0	0	-1	1

2.4 Equivalence of conditional and unconditional model

Conditional model:

$$\operatorname{var}(\eta_i \mid u_{i1}) = 0 \oplus \widetilde{\Sigma}_i$$
, where $\eta_i^T = (\eta_{i1}, \eta_{i2}, ...)$ and $b(i) = 1$

Unconditional model:

 $\operatorname{var}(\eta_i) = \Sigma_i$

Both models are equivalent in the sense that for any contrast $c^T \eta_i$

$$\operatorname{var}(c^{T}\eta_{i} \mid u_{i1}) = c^{T}(0 \oplus \widetilde{\Sigma}_{i})c = c^{T}\Sigma_{i}c = \operatorname{var}(c^{T}\eta_{i})$$

Equivalence (continued)

$$\operatorname{var}(c^{T}\eta_{i} \mid u_{i1}) = c^{T}(0 \oplus \widetilde{\Sigma}_{i})c = c^{T}\Sigma_{i}c = \operatorname{var}(c^{T}\eta_{i})$$

To see this, let $c^T = (c_1, c_2^T)$, where c_1 is the first element of c and c_2 is

the remainder. Then $c^T (0 \oplus \widetilde{\Sigma}_i) c = c_2^T \widetilde{\Sigma}_i c_2 = c_2^T D_i \Sigma_i D_i^T c_2 = (c_1, c_2^T) \Sigma_i (c_1, c_2^T)^T$.

Equivalence (continued)

- Models fully equivalent with identity link and normal distribution
- Models not equivalent with other link functions and distributions

Example 1:

- Smoking cessation data
- Changed baseline treatment in some trials
- Used adaptive Gaussian quadrature (GLIMMIX procedure of SAS)

•
$$\Sigma_i = I_{n(i)} \sigma_u^2 \implies \widetilde{\Sigma}_i = (I_{n(i)-1} + J_{n(i)-1}) \sigma_u^2$$

		Standard		
	Estimate	error		
Baseline contrasts	using original baseline treat	ments (A)		
$d_{_{AB}}$	0.4192	0.2959		
d_{AC}	0.7407	0.1738		
d_{AD}	0.9484	0.3292		
Baseline contrasts taking B as baseline treatment in trials 3-5				

$d_{_{AB}}$	0.4415	0.2982
d_{AC}	0.7449	0.1751
$d_{\scriptscriptstyle AD}$	0.9580	0.3315

Table 1: Smoking cessation data (Example 1 continued)					
	Ectimata	Standard			
	LSTIMUTE	error			
Baseline contrasts	(2) taking C as baseline trea	itment in trials 6-15			
$d_{_{AB}}$	0.4407	0.3154			
d_{AC}	0.7773	0.1868			
d_{AD}	0.9821	0.3493			
Two-way model est	timates				
$\alpha_B - \alpha_A$	0.3865	0.2387			
$\alpha_c - \alpha_A$	0.7166	0.1374			
$\alpha_D - \alpha_A$	0.9199	0.2720			

Table 2: Smoking cessation data (Example 1 continued); constant variance model for u_{ii}

Estimate	error
Adjusted means \$	
$\alpha_A + \overline{\beta}_{\bullet}$ -2.4235 a	0.1107
$\alpha_{B} + \overline{\beta}_{\bullet}$ -2.0366 ab	0.2106
$\alpha_{c} + \overline{\beta}_{\bullet}$ -1.7068 b	0.0971
$\alpha_D + \overline{\beta}_{\bullet}$ -1.5047 b	0.2273

\$ Adjusted means (computed on the logit scale) followed by a common letter are not significantly different at $\alpha = 5\%$ according to a Wald-test.

Table 3: Analysis of smoking cessation data based on two-way model.

		Standard	
Parameter	Estimate	error	AIC
Constant variance:			
σ_u^2	0.09068	0.02810	391.20
Diagonal (treatmen	nt-specific varia	nce):	
$\sigma^2_{u(1)}$	0.5599	0.2626	365.91
$\sigma^2_{u(2)}$	0	-	
$\sigma^2_{u(3)}$	0	-	
$\sigma^2_{u(4)}$	0.1292	0.2411	

 Table 4: Analysis of smoking cessation data based on two-way model.

		Standard	
Parameter	Estimate	error	AIC
Constant variance:			
σ_u^2	0.09068	0.02810	391.20
Factor-analytic:			
λ_1	0.4969	0.1736	364.02
λ_2	0	-	
λ_3	-0.2423	0.1157	
λ_4	0.05856	0.1985	

Fitting the two-way ANOVA model with SAS

Fitting the FA model with SAS

2.5 Trial effects fixed or random?

Trial effects fixed

- Inference based on within-trial information
- Inference protected by randomization
- Obeys principle of concurrent control (Stephen Senn, 2010)
- Can only assess relative treatment effects

Trial effects random

- Recovery of inter-trial information
- Need to assume that trials in NMA are random sample
- Can also assess absolute treatment effects

Recent discussion on arm-based (AB) versus contrast-based (CB) models

- The discussion focusses much on estimation of relative treatment effects (CB) versus absolute treatment effects (AB)
- I think this becomes a non-issue when a trial main effect is included in the AB model
- The main issue is whether or not to recover the inter-trial information, i.e. whether the trial main effect is taken as fixed or random

Dias S, Ades AE 2016 Absolute or relative effects? Arm-based synthesis of trial data (Commentary). Research Synthesis Methods 7, 23-28.

Hong, H., Chu, H., Zhang, J., Carlin, B.P. 2016 Rejoinder to the discussion of "a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons," by S. Dias and A.E. Ades. Research Synthesis Methods 7, 29-33.
3. Treatment summaries and contrasts thereof

Table 5: Summary measures analysis (empirical logits) for smoking cessation data (REML) (Example 1). We assumed $\Sigma_i = I_{n(i)}\sigma_u^2$ for heterogeneity under the two-way model. This is equivalent to fitting $\widetilde{\Sigma}_i = (I_{n(i)-1} + J_{n(i)-1})\sigma_u^2$ for the baseline-contrast model.

Estimable ·	function		Standard
Baseline contrasts <mark>§</mark>	Two-way model <mark>§</mark>	Estimate	error
d_{AB}	$\alpha_B - \alpha_A$	0.3978	0.3305
d_{AC}	$\alpha_{c} - \alpha_{A}$	0.7013	0.1972
d_{AD}	$\alpha_D - \alpha_A$	0.8642	0.3749

§ Results are identical for both analyses \Rightarrow Piepho et al. (2012)

3. Treatment summaries and contrasts thereof

Table 5 (continued)

Col	ntrast		Standard			
Baseline Two-way contrasts model		Estimate	error			
_	$\alpha_A + \overline{\beta}_{\bullet}$	Adjusted means \$ -2.3792 a	0.1553			
-	$\alpha_{\scriptscriptstyle B} + \overline{\beta_{\bullet}}$	-1.9815 ab	0.2886			
-	$\alpha_{c} + \overline{\beta}_{\bullet}$	-1.6779 b	0.1352			
-	$\alpha_D + \overline{\beta}_{\bullet}$	-1.5150 b	0.3100			

\$ Adjusted means followed by a common letter are not significantly different at $\alpha = 5\%$ according to a t-test using the Kenward-Roger (1997) method for approximating the denominator degrees of freedom and variance adjustments

3. Treatment summaries and contrasts thereof

Take home message up to here

Compared:

- Contrast-based model (conditional)
- Arm-based model (unconditional)

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Contrast-based model is not invariant to choice of baseline!

$$\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$$
$$\eta_{ik} = \beta_i + \alpha_k + u_{ik}$$

Example

- Trial network with three treatments (A, B, C)
- Three types of trial: A vs B, A vs C and B vs C
- Consider evidence on B vs C
- Need to combine direct and indirect evidence on treatment comparisons
 Direct comparison: Trials B vs C
 Indirect comparison: Trials A vs B and A vs C
- Inconsistency (incoherence):

 \Rightarrow direct and indirect comparisons for *B* vs *C* do not agree

Extending the notion of inconsistency

- Comparison of direct and indirect evidence on a contrast
- Presence of a new treatment in a trial may well modify the direct difference between A and B (Lu et al., 2011)

 \Rightarrow need to also compare direct comparisons from different types of trial

Idea

 \Rightarrow Test interaction in trial type \times treatment classification

Model to test for inconsistency

$$\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}$$

 δ_{i} = fixed main effect for the *j*-th trial type (design)

 $(\alpha \delta)_{jk}$ = fixed effect for the interaction *jk*-th trial type × treatment

- Heterogeneity u_{ijk} can be separated from inconsistency $(\alpha \delta)_{jk}$ provided there are several trials per trial type (design)
- Heterogeneity is a property of variation among trials within the same trial type (design), while inconsistency affects variation between trial types (Piepho, Madden and Williams, 2012, Biometrics)

5.1 The bias problem illustrated

 $\eta_{ij} = \beta_i + \alpha_j + u_{ij}$

Assume here: balanced data, normality

Use:

 MS_{ST} = ANOVA mean square for the trial-by-treatment interaction

- MS_E = error mean square
- s = number of trials (studies)
- *t* = number of treatments
- n = number of replications

ML estimation of $\sigma_u^2 = var(u_{ij})$ is biased:

$$\hat{\sigma}_{u}^{2} = \frac{(1-s^{-1})(1-t^{-1})MS_{ST} - MS_{E}}{n}$$

By comparison, the ANOVA estimator is unbiased:

$$\hat{\sigma}_u^2 = \frac{MS_{ST} - MS_E}{n}$$

 \Rightarrow identical to REML when $\hat{\sigma}_u^2 \ge 0$

Bias problem with ML is potentially worse with unbalanced data and GLMMs

- 5.2 Alternatives to full ML
- \Rightarrow penalized quasi-likelihood (PQL)/pseudo-likelihood (PL)

(Brewlow & Clayton 1993; O'Connell & Wolfinger 1993)

- \Rightarrow ML with random trial effects
- \Rightarrow REML-like modifications of ML

(Piepho et al. 2018 Pharmaceutical Statistics)

Pseudo-Likelihood (PL)

- Linearization of GLMM by Taylor series expansion
- Analysis of linearized model by residual ML (REML)
- \Rightarrow Expansion around $X\beta \qquad \Rightarrow$ RMPL (M = marginal)
- \Rightarrow Expansion around $X\beta + Zu \Rightarrow RSPL$ (S = subject-specific)

RMPL and RSPL are implemented in the GLIMMIX procedure of SAS

(O'Connell & Wolfinger 1993)

ML with random trial effects β_i

$$\hat{\sigma}_{u}^{2} = \frac{(1-s^{-1})MS_{ST} - MS_{E}}{n}$$
 (balanced data, normal)

Problem with unbalanced data and with GLMMs:

 \Rightarrow inter-trial information recovered

Two ad hoc remedies to prevent recovery of inter-trial information:

(1) fix
$$\sigma_{\beta}^2 = \operatorname{var}(\beta_i)$$
 at large value

(2) estimate σ_u^2 assuming random trial effects, then take trial effects fixed

A useful representation of REML as a modification of ML

 $Y = X\beta + Zu + e$

where

 β and u = fixed and random effects vectors; var(u) = G

X and Z = design matrices, and

e = vector of residual errors; var(e) = R

Re-write the model as

 $Y = X\beta + \widetilde{Z}\widetilde{u}$

where
$$\widetilde{Z} = \begin{pmatrix} Z & I \end{pmatrix}$$
 and $\widetilde{u}^T = \begin{pmatrix} u^T & e^T \end{pmatrix}$.

Equivalent form:

$$Y = X\beta^* + \left(I - X(X^T X)^T X^T\right)\widetilde{Z}\widetilde{u}$$

where

$$\beta^* = \beta + (X^T X)^{-} X^T \widetilde{Z} \widetilde{u}$$

and M^- denotes a g-inverse of M .

Now take β^* as fixed:

 $E[Y] = X\beta^*$ $V[Y] = K\Sigma K^T$

where
$$K = \left(I - X \left(X^T X
ight)^{\!\!-} X^T
ight)$$
 and $\Sigma = Z G Z^T + R$.

Estimation of this model by ML is equivalent to the classic representation of REML as marginal ML for KY, where we maximize the likelihood for $KY \sim N(0, K\Sigma K^T)$, which is synonymous with the likelihood for $Y \sim N(X(X^TX)^TX^TY, K\Sigma K^T)$, which in turn is synonymous with ML for $Y \sim N(X\beta^*, K\Sigma K^T)$ profiled over β^* choosing $\hat{\beta}^* = (X^TX)^TX^TY$.

The important point to observe about this representation of REML is that by reducing the dimensionality of the random effects space (i.e., substitution of \widetilde{Z} by $K\widetilde{Z}$), we effectively inflate the variance component estimates.

REML-like modification of ML for GLMM

$$E[Y | u] = g^{-1}[X\beta + Zu]$$

where

g(.) = link function and

 $Y \mid u \sim$ some distribution in the exponential family

 \Rightarrow This time, cannot include the residual error e in the random effects

But we can take the modification as far as this:

$$E[Y | u] = g^{-1} \left[X \beta^{**} + \left(I - X \left(X^T X \right)^{-} X^T \right) Z u \right]$$

where
$$\beta^{**} = \beta + (X^T X)^{-} X^T Z u$$
.

In this modification, we have replaced Z by KZ in a fashion analogous to REML in the normal case, thereby reducing the dimensionality of the random effects

Example 2: Diabetes data (Elliot & Meyer, 2007, Lancet)

- Incidence of diabetes with various antihypertensive drugs
- Binomial response (cases/total counts)
- 6 treatments: ACE Inhibitor, ARB, CCB, Diuretic, Placebo, Beta-blocker
- 21 studies
- Data very incomplete

 Table 6: Treatments tested in 21 studies of diabetes dataset.

Trial ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Treatment																					
ACE inhibitor	X	x	x		x		x				×						×			x	
ARB						x								×				×			×
ССВ	X	x		x								×	×			×				x	x
Diuretic		x	x					x		×		×			×				×		
Placebo						x	x	x	x		×						×	×	×		
Beta-blocker	x			x	x					×			×	×	×	×				x	

5.3 Simulation study

- Fit binomial GLMM with logit link using pseudo-likelihood (PL)
- Simulate from fitted model (10,000 runs)
- Assess:
 - \Rightarrow bias and mean squared error (MSE) of parameter estimates
 - \Rightarrow coverage probabilities of 95% confidence intervals for contrasts

 Table 7: Simulation results for variance estimate

Method	Bias [× 10 ⁻²]	MSE [× 10 ⁻⁴]							
Trial main effects β_i fixed									
ML	-4.582	22.188							
ML (KZ for Z) [§]	-0.1720	6.580							
RSPL	0.0124	6.629							
RMPL	-0.2635	5.754							
Trial main effect β_i random									
ML ($\sigma_{eta}^2=10^4$)	-1.6100	6.853							
ML (β_i fixed for	-1.5630	6.843							
estimating $lpha_j$									

§ REML-like modification of ML

Table 8: Simulation results for contrast $\alpha_1 - \alpha_2$ (A - B)

Method	Bias [× 10 ⁻²]	MSE [× 10 ⁻⁴]	Coverage (%)						
Trial main effects β_i fixed									
ML	0.06656	287.9	0.7945						
ML (KZ for Z) [§]	-0.00758	286.4	0.9437						
RSPL	0.04517	285.0	0.9467						
RMPL	0.05967	283.8	0.9436						
Trial main effect β_i random									
ML ($\sigma_{\scriptscriptstyleeta}^2=10^4$)	0.00449	286.4	0.9102						
ML (eta_i fixed for	0.00716	286.1	0.9187						
estimating $lpha_{j}$									

§ REML-like modification of ML

6. Summary

 $\eta_{ik} = \mu_i + U_{ik} \delta_{ib(i)k}$

 $\eta_{ik} = \beta_i + \alpha_k + u_{ik}$

Compared:

- Contrast-based model (conditional)
- Arm-based model (unconditional)

- Summary data
- Individual patient data with identity link and normal errors

Very similar results:

- All other cases
- But: Contrast-based model is not invariant to choice of baseline!

6. Summary

- Arm-based (two-way ANOVA) model invariant to choice of baseline
- Arm-based (two-way) model much easier to fit using standard software
- Easy to fit two-way variance-covariance models for heterogeneity
- Inconsistency = treatment x trial design interaction
- PL/PQL & REML-like modification of ML are preferred methods for variance estimation

Lesson for multi-environment variety trials:

• Consider testing inconsistency in trials networks

References:

Madden, L.V., Piepho, H.P., Paul, P.A. (2016): Models and methods for network meta-analysis. *Phytopathology* **106**, 792-806.

Piepho, H.P. (2014): Network-meta analysis made easy: Detection of inconsistency using factorial analysis-of-variance models. *BMC Medical Research Methodology* **14**, 61.

Piepho, H.P., Madden, L.V., Roger, J., Payne, R., Williams, E.R. (2018): Estimating the variance for heterogeneity in arm-based network meta-analysis. *Pharmaceutical Statistics* (forthcoming).

Piepho, H.P., Madden, L.V., Williams, E.R. (2015): Multiplicative interaction in network metaanalysis. *Statistics in Medicine* **34**, 582-594.

Piepho, H.P., Möhring, J., Schulz-Streeck, T., Ogutu, J.O. (2012): A stage-wise approach for analysis of multi-environment trials. *Biometrical Journal* **54**, 844-860.

Piepho, H.P., Williams, E.R., Madden, L.V. (2012): The use of two-way mixed models in multitreatment meta-analysis. *Biometrics* 68, 1269-1277.

Thanks!

Example

- Trial network with three treatments (A, B, C)
- Three types of trial: A vs B, A vs C and B vs C
- Consider evidence on B vs C
- Need to combine direct and indirect evidence on treatment comparisons
 Direct comparison: Trials B vs C
 Indirect comparison: Trials A vs B and A vs C
- Inconsistency (incoherence):

 \Rightarrow direct and indirect comparisons for *B* vs *C* do not agree

Reasons for inconsistency

- A new drug may be tested on a population of patients, for which a standard drug did not show a satisfactory effect. The effect relative to a placebo in such a selected population may differ from the effect in a population that is not selected in this way.
- Inconsistency may also occur in open-label or imperfectly blinded trials (Lumley, 2002)

Other term

• Incoherence (Lumley, 2002)

Inconsistency relation

- Assume that B is baseline treatment in trials B vs C
- Use functional parameter to model effect of C :

 $d_{BC} = d_{AC} - d_{AB}$

• Modification in case of inconsistency :

 $d_{BC} = d_{AC} - d_{AB} + w_{ABC}$ (inconsistency relation)

- \Rightarrow use this for treatment C in trials where B is baseline
- If W_{ABC} is significant, inconsistency is established

Loops

Network forms a closed loop between *A*, *B* and *C* in an undirected graph with vertices corresponding to treatments and edges representing direct comparisons between treatments (Lu and Ades, 2006)

Using inconsistency factors is not easy!

- Modeling and interpretation of inconsistency become more difficult in the presence of multi-arm trials, and fitting the model may require careful programming
- The types of inconsistency that can be tested using inconsistency factors are not invariant to the choice of basic parameters
- "... we have not managed to find a general formula of a mechanical routine to count [the number of independent consistency relations]" (Lu & Ades, 2006)
- "In practice, an inconsistency model must be programmed very carefully, and the [number of independent inconsistencies] may have to be counted by hand." (Lu & Ades, 2006)

Extending the notion of inconsistency

- Comparison of direct and indirect evidence on a contrast
- Presence of a new treatment in a trial may well modify the direct difference between A and B (Lu et al., 2011)

 \Rightarrow need to also compare direct comparisons from different types of trial

Idea

 \Rightarrow Test interaction in trial type \times treatment classification

Model to test for inconsistency

$$\eta_{ijk} = \delta_j + \beta_{ij} + \alpha_k + (\alpha \delta)_{jk} + u_{ijk}$$

 δ_i = fixed main effect for the *j*-th trial type

 $(\alpha \delta)_{jk}$ = fixed effect for the interaction jk-th trial type × treatment

- Heterogeneity u_{ijk} can be separated from inconsistency $(\alpha \delta)_{jk}$ provided there are several trials per trial type (design)
- Heterogeneity is a property of variation among trials within the same trial type, while inconsistency affects variation between trial types

(Piepho, Madden and Williams, 2012, Biometrics)

	Treatment							
Trial type	A	В	С					
1	X	X						
2	X		X					
3		X	X					

Fig. 2: Trial type \times treatment classification for network {A vs B, A vs C, B vs C}.

- n = 3 treatments
- m = 3 trial types
- c = 6 cells filled
- \Rightarrow c n m + 1 = 1 d.f. for interaction trial type \times treatment
| | Treatment | | | |
|------------|-----------|---|---|--|
| Trial type | A | В | С | |
| 1 | X | X | X | |
| 2 | X | X | | |

Fig. 3: Trial type \times treatment classification for network {A vs B vs C, A v. B}.

- n = 3 treatments
- m = 2 trial types
- c = 5 cells filled
- \Rightarrow c n m + 1 = 1 d.f. for interaction trial type \times treatment

	Treatment			
Trial type	A	В	С	
1	X	X		
2	X		X	
3	X	X	X	

Fig. 4: Trial type \times treatment classification for network {A vs B, A vs C, A vs B vs C}.

- n = 3 treatments
- m = 3 trial types
- c = 7 cells filled
- \Rightarrow c n m + 1 = 2 d.f. for interaction trial type \times treatment

Example 3:

- Diabetes study of Senn et al. (2013)
- 26 trials
- 15 different designs (one three-arm trial)
- 10 treatments, mostly involving glucose-lowering agent added to baseline sulfonylurea treatment
- Continuous outcome: blood glucose change

Factor symbol	Factor description
G	Group of trials, trial type, design
S	Study, trial
Т	Treatment

Two-way ANOVA

 $S \times T = S + T + S.T$

Model for inconsistency

Locating inconsistency by detachment of individual designs

(Krahn et al. 2013)

Factor symbol	Factor description
D1	D1 = 1 for design 1, D1 = 0 otherwise
G	Group of trials, trial type, design
S	Study, trial
Т	Treatment

Design	Design	No.	D.f.	Effect G.S.T fixed			
	no. (k)	of	for	Detachm	ent Dk.T	Inconsistency	Dk.G.T
		trials	Dk.T	Wald	p-value	Wald	p-value
				statistic		statistic	
acar:plac	1	1	1	0.09	0.7699	22.45	0.0010
acar:SUal	2	1	1	0.01	0.9091	22.52	0.0010
metf:plac	4	3	1	0.46	0.4976	22.07	0.0012
metf:acar:plac	5	1	2	0.15	0.9297	22.39	0.0004
metf:SUal	6	1	1	15.02	0.0001	7.52	0.2758
piog:plac	8	1	1	5.28	0.0215	17.25	0.0084
piog:metf	9	1	1	5.40	0.0201	17.13	0.0088
piog:rosi	10	1	1	0.05	0.8280	22.49	0.0010
rosi:plac	11	6	1	6.24	0.0125	16.30	0.0122
rosi:metf	12	2	1	0.01	0.9199	22.52	0.0010
rosi:SUal	13	1	1	15.76	<0.0001	6.77	0.3424

Design	Design	No.	D.f.	Effect G.S.T random			
	no. (k)	of	for	Detachm	ent Dk.T	Inconsistency	Dk.G.T
		trials	Dk.T	Wald	p-value	Wald	p-value
				statistic		statistic	
acar:plac	1	1	1	0.02	0.8889	2.25	0.8782
acar:SUal	2	1	1	0.01	0.9430	2.26	0.8765
metf:plac	4	3	1	0.04	0.8379	2.22	0.8814
metf:acar:plac	5	1	2	0.07	0.9634	2.18	0.8129
metf:SUal	6	1	1	1.63	0.2343	0.92	0.9835
piog:plac	8	1	1	0.43	0.5299	1.96	0.9062
piog:metf	9	1	1	0.43	0.5318	1.94	0.9081
piog:rosi	10	1	1	0.01	0.9065	2.27	0.8751
rosi:plac	11	6	1	0.74	0.4112	1.87	0.9168
rosi:metf	12	2	1	0.01	0.9276	2.25	0.8795
rosi:SUal	13	1	1	1.79	0.2146	0.66	0.9930

Case-deletion plots and residual diagnostics

(1) Fit model (G/S) \times T and compute G.T means

(2) Fit model G + T to G.T means

 \Rightarrow Drop a G.T mean and compute T means based on model G + T

 \Rightarrow Compute studentized residuals for G.T means from model G + T

Fig. 4: Case-deletion plot of treatment means. Case-deletion means based on a fit of the model G + T using design × treatment mean estimates obtained from fitting model (2) taking heterogeneity G.S.T as random. To obtain diagnostics for treatment means (factor T), we prevented an intercept from being fitted and imposed a sum-to-zero restriction on the design effects G.

Design	Observation	Treatment	G.S.T random		
			PRESS residual	Studentized res.	
1	1	Acar	0.0785	0.1453	
	2	plac	-0.0785	-0.1453	
2	3	acar	0.0619	0.1056	
	4	SUal	-0.0619	-0.1056	
3	5	benf			
	6	plac			
4	7	metf	-0.0781	-0.2282	
	8	plac	0.0781	0.2282	
5	9	acar	-0.1507	-0.2601	
	10	metf	0.0036	0.0075	
	11	plac	0.1193	0.2273	
6	12	metf	0.6095	1.1614	
	13	SUal	-0.6095	-1.1614	
7	14	migl			
	15	plac		•	

Design	Observation	Treatment	G.S.T random		
			PRESS residual	Studentized res.	
8	16	piog	-0.2802	-0.5585	
	17	plac	0.2802	0.5585	
9	18	metf	-0.2927	-0.5779	
	19	piog	0.2927	0.5779	
10	20	piog	-0.0073	-0.0141	
	21	rosi	0.0073	0.0141	
11	22	plac	-0.2100	-0.6391	
	23	rosi	0.2100	0.6391	
12	24	metf	-0.0616	-0.1610	
	25	rosi	0.0616	0.1610	
13	26	rosi	-0.6733	-1.2693	
	27	SUal	0.6733	1.2693	
14	28	plac		•	
	29	sita		•	
15	30	plac			
	31	vild		•	