

Individualized prediction in pulmonary embolism; novel concepts and future ideas. Geert-Jan Geersing, MD PhD Family Medicine specialist

Our thrombosis research

Article

The Wells Rule Does Not Adequately Rule Out Deep Venous Thrombosis in Primary Care Patients

Ruud Oudega, MD; Arno W. Hoes, MD, PhD; and Karel G.M. Moons, PhD

Since then:
→ 50+ papers
→ Guidelines primary care

R.Oudega, et.al. Ann Int Med 2005;143:100-107

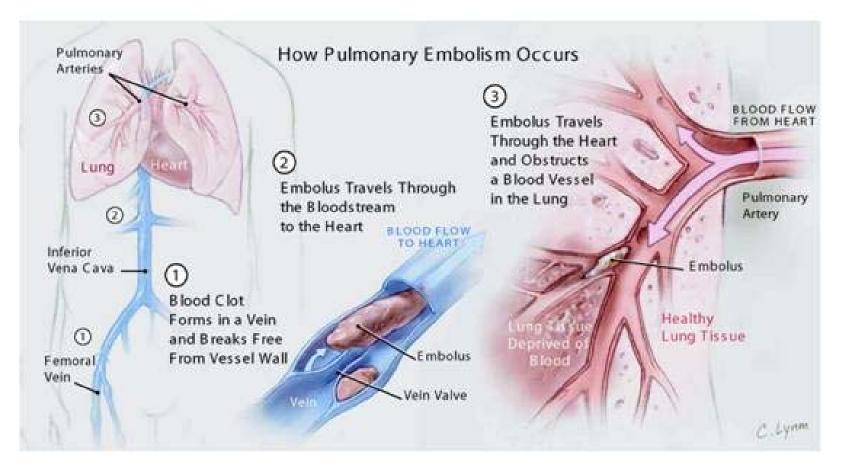
And beyond ...

DIAGNOSIS, PROGNOSIS AND TREATMENT?!

SVT distal DVT proximal DVT atrial fib PE AF + ...

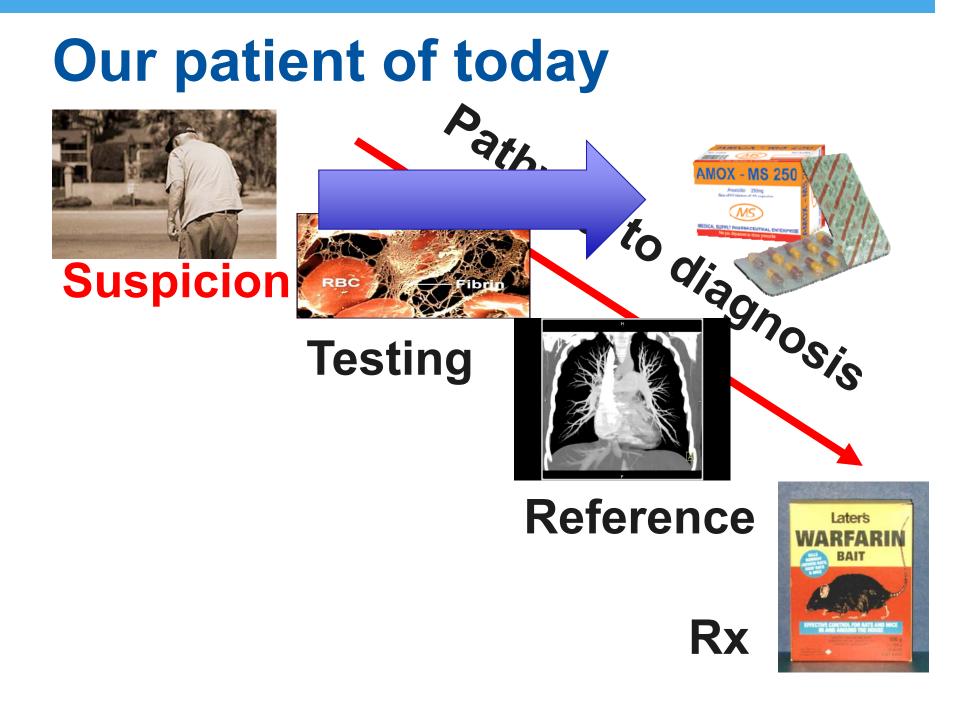
Mild thrombosis

Severe thrombosis


Management of (acute) pulmonary embolism

Pulmonary embolism

Europe: 500.000+ deaths per year


Our patient of today

<u>Home visit:</u> 82 years Heavy smoker COPD, HT

Shortness of breath 'not like it usually is, doc ...'

Suspected of PE...

COPD exacerbation? Heart failure? "not like usually…" → PE…

Misdiagnosis is common

Table 1. Most Frequently Missed Diagnoses Among 583 Physician-Reported Cases of Diagnostic Error

No. (%)
26 (4.5)
26 (4.5)
23 (3.9)
19 (3.3)
18 (3.1)

G.Schiff, et.al. Arch Intern Med 2009;169(20):1881-7

Not a new problem

Clinical Features

Unless doctors and nurses become more "thrombosisminded" venous thrombosis will too often remain undiagnosed until it has spread to the femoral vein and produced an obvious swelling of the leg or sudden death through pulmonary embolism has occurred. The key to effective treatment is early diagnosis while the process is limited to the calf.

BMJ 1949

What do we know

Common; estimates 30-50%

Higher age/comorbidity
 Non-specific symptoms
 May increase mortality

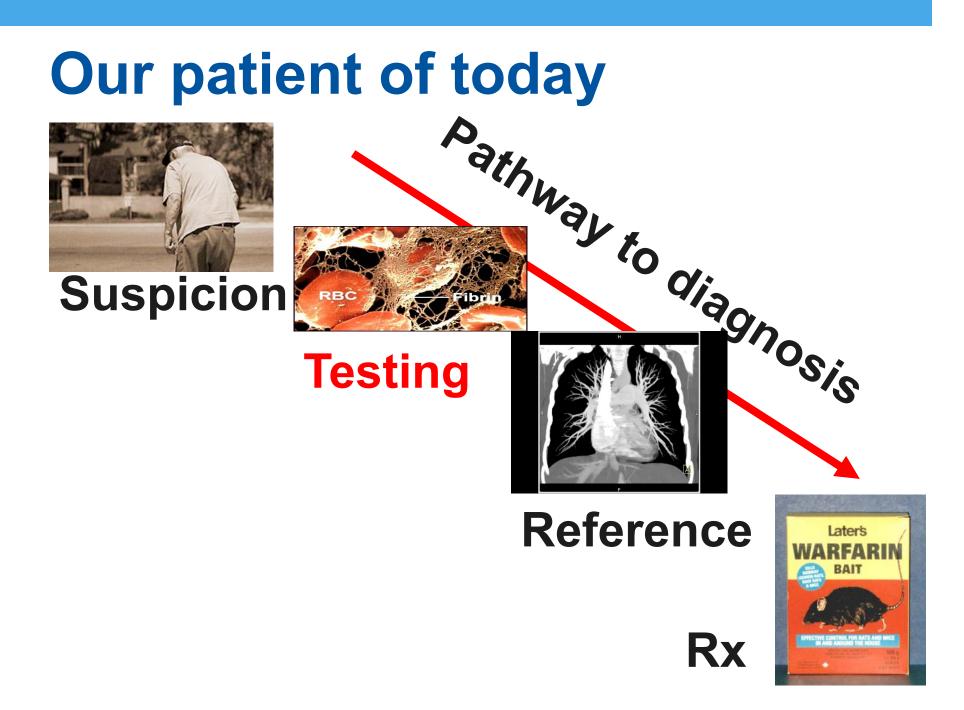
J. Alonso-Martinez, et.al. Eur.J.Int.Med. 2010;278-82 J. Torres-Macho, et.al. Am.J.Emerg.Med. 2013;1646-50

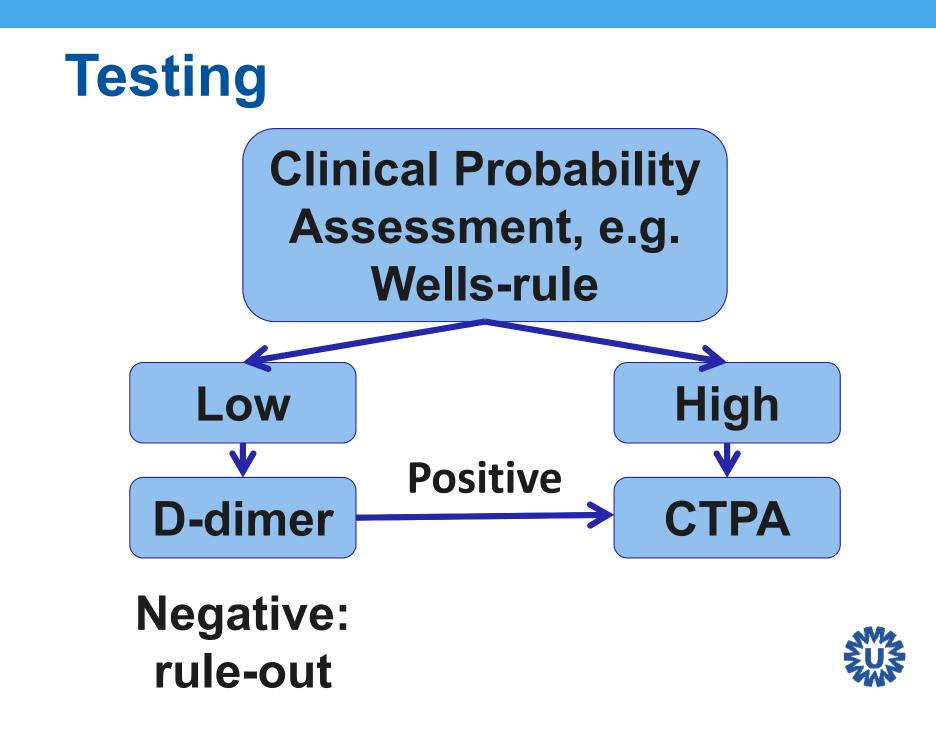
More research needed

Determinants in primary care

→Consequences

Evaluate awareness strategies

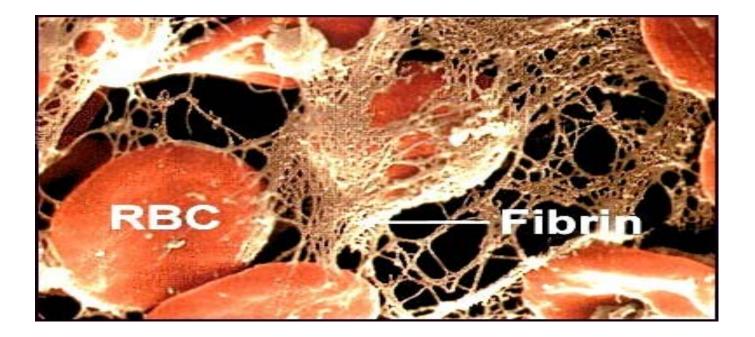

Journal of Thrombosis and Haemostasis, 2: 1244-1246


COMMENTARY

Diagnosing pulmonary embolism: running after the decreasing prevalence of cases among suspected patients

G. LE GAL and H. BOUNAMEAUX Division of Angiology and Hemostasis, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland

Good news: Wells-rule


Variable	Points
Signs of DVT	3.0
PE most likely	3.0
Heart rate > 100	1.5
Immobilization	1.5
Previous PE or DVT	1.5
Hemoptysis	1.0
Cancer	1.0

Score ≤ 4 defines low risk

Score >4 defines high risk

Good for rule-out Yet, low specificity

More good news

Table 2. Failure Rate and Efficiency of Gestalt and the Clinical Decision Rules When Combined With Either Quantitative or Qualitative D-Dimer Testing*

Gestalt or Rule	Studies, n	Patients, n	Prevalence of Pulmonary Embolism, %	Fallure Rate (95% CI), %	Efficiency (95% CI), %
All	23	24 384	14.0	0.7 (0.5–1.0)	35 (30-41)
Quantitative D-dimer testing	42	10.014	24.4	0.4/02.07	22 (22 24)
All	12	10 941	21.1	0.4 (0.2–0.7)	27 (22–34)
Wells, cutoff value ≤4	4	5320	19.2	0.5 (0.2-0.9)	39 (31-47)
Geneva	2	1224	24.4	0.0 (0.0-1.3)	21 (14-31)
Simplified Geneva	2	1856	23.3	0.3 (0.0-1.7)	23 (15-33)
Qualitative D-dimer testing	11	13 443	8.3	10/08 13	45 (20 52)
All	11			1.0 (0.8–1.3)	45 (39-52)
Gestalt	2	3495	4.4	0.7 (0.4–1.2)	52 (40-64)
Wells					
Cutoff value ≤4	3	2337	16.0	1.7 (1.0-2.8)	42 (32-52)
Cutoff value <2	5	5309	9.0	0.9 (0.6–1.5)	40 (33-48)

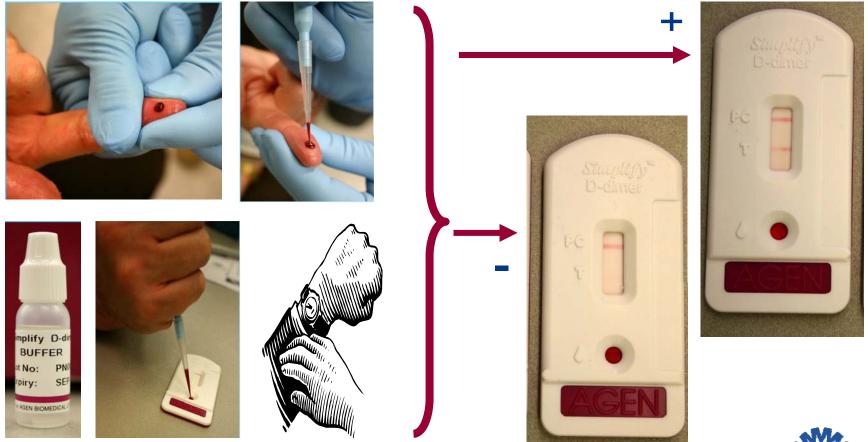
* Separate results shown only when ≥2 studies were available.

W. Lucassen, et.al. Ann Int Med 2011; 155:448-60

Also true for primary care

BMJ 2012;345:e6564 doi: 10.1136/bmj.e6564 (Published 4 October 2012)

Safe exclusion of pulmonary embolism using the Wells rule and qualitative D-dimer testing in primary care: prospective cohort study


OPEN ACCESS

Geert-Jan Geersing general practitioner¹, Petra M G Erkens clinical epidemiologist², Wim A M Lucassen general practitioner³, Harry R Büller professor of medicine⁴, Hugo ten Cate professor of medicine⁵, Arno W Hoes professor of general practice¹, Karel G M Moons professor of clinical epidemiology¹, Martin H Prins professor of clinical epidemiology², Ruud Oudega general practitioner¹, Henk C P M van Weert professor of general practice³, Henri E J H Stoffers general practitioner²

Point-of-care D-dimer

Clearview Simplify[®], Inverness Medical, Bedford, UK

More POC tests

Sensitivity lower (around 90%) Good NPV combined with CDR Cost-effective

G.J. Geersing, et.al. BMJ; 2009:b2990 J. Hendriksen, et.al. Expert Rev Mol Diagn; 2015:125-366

Back to our patient

Decisions to Withhold Diagnostic Investigations in Nursing Home Patients with a Clinical Suspicion of Venous Thromboembolism

Henrike J. Schouten^{1,2}*, Huiberdina L. Koek², Marije Kruisman-Ebbers¹, Geert-Jan Geersing¹, Ruud Oudega¹, Marijke C. Kars¹, Karel G. M. Moons¹, Johannes J. M. van Delden¹

1 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands, 2 Department of Geriatrics, University Medical Center Utrecht, Utrecht, the Netherlands

423 nursing home patients322 'high risk'39% of those: not referred

H. Schouten, et.al. PloS one;2014: e90395

Mortality non-referred

126 non-referred: mean age: 82 years 75% blind initiation of anticoagulants (!) Mortality at 3 months: 31%

199 referred: mean age: 82 years 60% confirmed VTE (!) Mortality at 3 months: 17%

adjusted OR mortality 1.99 (1.09-3.62)

"In many of my years of experience, I have seen so much misery: people going to the hospital and either dying there, tremendously delirious, tied up to the bed, or returning in a condition that makes you say: "Oh my, I wish we had never started this."

Interim summary

Getting a suspicion difficult but if we do:

- Validated prediction rules
- (POC) D-dimer testing
- Often false-positive = frustrating
- Leads to: non-referral in nursing homes

Better tools needed

Improve "rule-in"

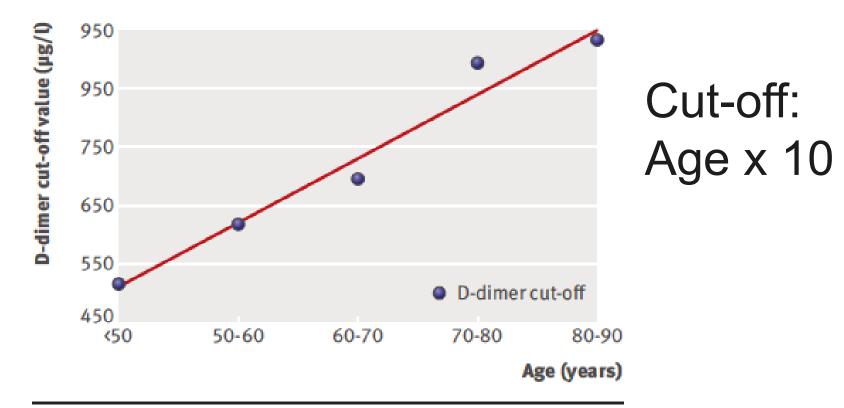
→(serial) ultrasound testing

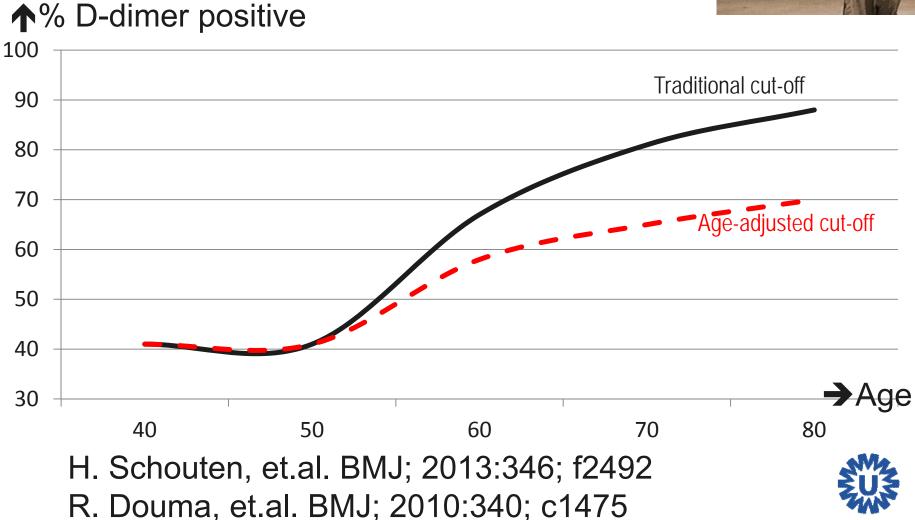
Improve "rule-out"

→ Age-adjusted D-dimer:

→cut-off = age x 10 if age > 50 years

Age-adjusted D-dimer

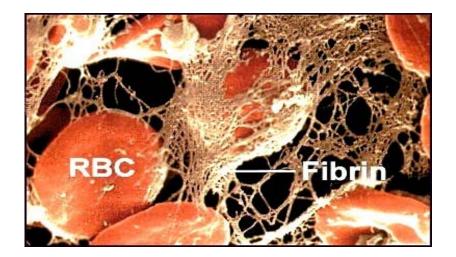



Fig 1 | Optimal cut-off values for D-dimer test for pulmonary embolism by age in patients with an unlikely clinical probability of pulmonary embolism (sensitivity set at 100%)

R. Douma, et.al. BMJ; 2010:340; c1475

Back to our patient

Age-adjusted D-dimer


Fewer false-positives D-dimer

Still: ≈70% positive if age > 80 years

Not incorporated: gender, comorbidity, cancer, etc.

The next step

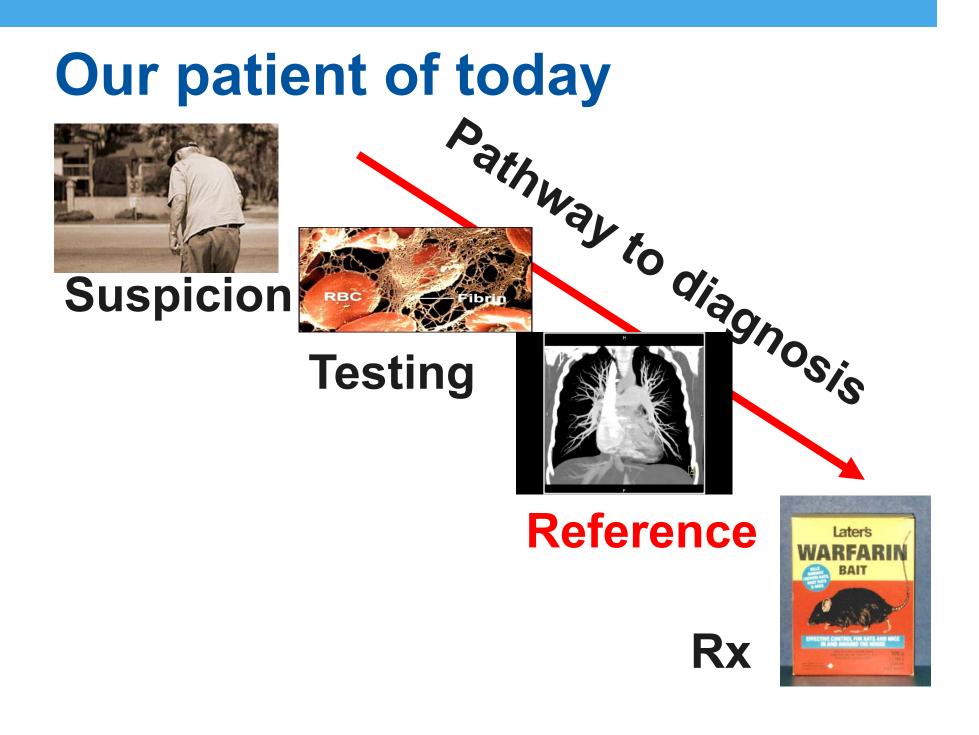
Personalized threshold based on age, gender, comorbidity, frailty, PTP, etc.

IPD meta-analysis

Database ≈ 15.000 patients Group: Canada-USA-Netherlands-Others?

→Advanced updating technique
→Interaction terms into the model
→Multilevel structure
→So aim ≠ "new rule"!

IPD meta-analysis


Many advantages

- Efficient use of existing data
- →Gain in subgroup analyses
- Robust models, multiple validation option

A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis

Thomas P. A. Debray,^{a*†} Karel G. M. Moons,^a Ikhlaaq Ahmed,^b Hendrik Koffijberg^a and Richard David Riley^b

- High sensitivity
- Easy to do
- Other diagnosis

Flipside: Overdiagnosis

PERSPECTIVE

Overdiagnosis and Overtreatment of Pulmonary Embolism: The Emperor May Have No Clothes

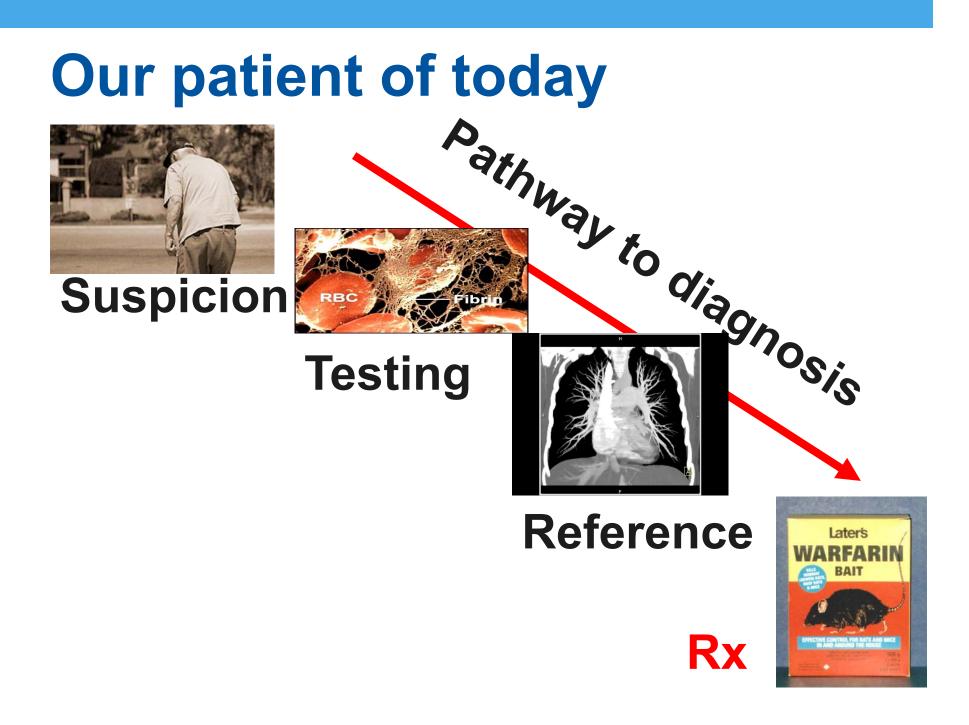
EUGENE D. ROBIN, M.D., F.A.C.P.; Stanford, California

Ann Int Med 1977

Flipside: Overdiagnosis

SPECIAL ARTICLE

LESS IS MORE The Diagnosis and Treatment of Pulmonary Embolism


A Metaphor for Medicine in the Evidence-Based Medicine Era

Vinay Prasad, MD; Jason Rho, MD; Adam Cifu, MD

→Finding small clots→Rx treatment benefit?

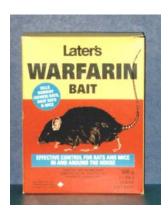
V. Prasas, et.al. Arch Int Med; 2012:172(12) 955-8

Treatment duration

Risk-benefit ratio:

Risk of recurrent event

versus


Risk of bleeding

Both for recurrence and bleeding→ Individualized Prediction models

What we know

Provoked: low risk of recurrence

Unprovoked: recurrences, yet heterogeneous

Bleeding: ↑ in elderly, HT, history of bleeding, etc.

Risk of recurrence

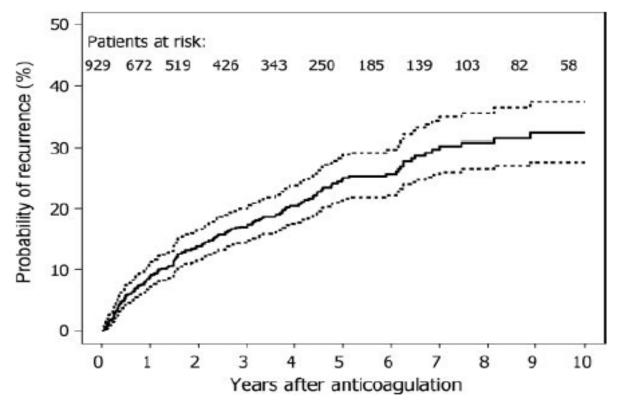


Figure 1. Overall cumulative recurrence rate in 929 patients with a first unprovoked VTE estimated by Kaplan-Meier analysis, with 95% CIs (dotted lines).

S. Eichinger, et.al. Circulation; 2010:121: 1630-6

Research agenda

Several validation and impact studies ongoing (e.g. VISTA, VALID, REVERSE)

Validation bleeding risk scores

Future challenge: incorporate bleeding and recurrence in one (bivariate?) model

Take home messages PE challenging disease

Suspicion -> Testing -> Reference -> Rx

➔In all steps: Prediction=personalized medicine (one size does not fit all)

NA SUS

Thanks for your attention

On behalf of my colleagues:

Prof. K.G.M. Moons, PhD Prof. A.W. Hoes, MD PhD F.H. Rutten, MD PhD R. Oudega, MD PhD J.M.T. Hendriksen, MD PhD S. Van Doorn, MD A.E.C. Kingma, MD C. Van den Dries, MD L.P.T. Joosten, MD

Contact information: g.j.geersing@umcutrecht.nl

www.gjgeersing.nl

