
The design of blocked experiments when
the average replication is very low

R. A. Bailey
University of St Andrews QMUL (emerita)

Biometric Society, Wien, November 2016

1/34



Abstract

In breeding trials of new crop varieties, typically there is very
little seed of each of the new varieties. Traditionally, an
experiment has one plot for each new variety and several plots
for a well-established “control”.

On the other hand, the usual statistical wisdom of equal
replication suggests replacing many occurrences of the control
by double replicates of a small number of new varieties,
especially if comparisons with control are of no interest.
This is an improvement if there are no blocks.

However, recent work shows that
when there are blocks and the average replication is less than 2
then the best designs are far from obvious.
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How do we allow for variation between the plots?

“. . . on any given field agricultural operations, at least for
centuries, have followed one of two directions, which are
usually those of the rows and columns; consequently streaks of
fertility, weed infestation, etc., do, in fact, occur predominantly
in those two directions.”

R. A. Fisher,
letter to H. Jeffreys,

30 May 1938
(selected correspondence edited by J. H. Bennett)

(This assumption is dubious for field trials in Australia.)

If field operations have been primarily in one direction for a
long time, then it is reasonable to divide the fields into blocks
whose length runs along that direction.
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Blocking in the second phase of a variety trial

The milling phase of a wheat variety trial has 224 varieties to be
compared. Only 10 can be milled in any one day. The trial can
take place over 28 days, so there are 28 blocks of size 10.

There are only 280− 224 = 56 experimental units “spare” for
replication. How should these be allocated?

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication

One extreme: 2 “controls” (among the test varieties) in every
block.
Even more extreme: 2 uninteresting controls in each block.
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Two possible designs for 224 varieties in 28 blocks of 10

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication

28 blocks



4 units 6 units

...
...

56 varieties 168 varieties
all replicated twice all single replication
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The problem

We are given b blocks of size k. We are given v varieties.
Assume that

average replication = r̄ =
bk
v
≤ 2.

How should we allocate varieties to blocks?

Which paradigm do you favour?
I Controls in every block.
I Replication as equal as possible.

What makes a block design good?
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A-optimal designs

We measure the response Y on the plot
with variety i in block D, and assume that

Y = τi + βD + random noise,

where the random noise is N(0, σ2),
independently for each plot.

Put

Vij σ2 =
variance of the best linear unbiased estimator
for τi − τj;

VT =
v−1

∑
i=1

v

∑
j=i+1

Vij ∝ sum of variances of variety differences.

A block design is A-optimal if it minimizes VT.
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Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;

a queen-bee if it occurs in every block;
a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?
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How should we distribute the drones?

Block A Block B
n drones m drones

If i is a drone in block A and j is a drone in block B then

Vij = 2 + VAB,

where VABσ2 is the variance of the estimator of the difference
between the block effects of A and B in the design obtained by
ignoring the drones.

If we move all the drones in block B into block A
then we reduce nm variances from 2 + VAB to 2.

Then we have to remove m non-drones from block A,
and this increases the variances between these n + m drones
and the remaining v− n−m varieties. This more than
compensates for the original reduction in variance.
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From now on, distribute drones as equally as possible

b blocks



k′ plots n plots

...
...

v′ varieties bn drones
all single replication

subdesign Γ

whole design ∆

Whole design ∆ has v varieties in b blocks of size k = k′ + n;
the subdesign Γ has v′ core varieties in b blocks of size k′.
(The core varieties may include extra drones.)

n ≥ n0 =

⌊
2v− bk

b

⌋
k′ ≤ k0 = k− n0
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Sum of the pairwise variances

Theorem (cf. Herzberg and Jarrett, 2007)

If there are n drones in each block of ∆,
and the core subdesign Γ has v′ varieties in b blocks of size k′

then the sum of the variances of variety differences in ∆

= VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ),
where

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of (the estimators of) sums
of one variety effect and one block effect in Γ.
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Sum of variances in whole design if Γ is equi-replicate

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)
VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one variety and one block in Γ.

If Γ is equi-replicate with replication r′ then

k′

b
VB(Γ)− b =

r′

v′
VT(Γ)− v′;

VBT(Γ) =
2b
v′

VT(Γ) +
v′

k′
(b− v′ − 1),

so VB(Γ) and VBT(Γ) are both increasing functions of VT(Γ).

Consequence

For any given k′, use the core subdesign Γ which minimizes VT(Γ).

12/34



Sum of variances in whole design if Γ is equi-replicate

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)
VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one variety and one block in Γ.

If Γ is equi-replicate with replication r′ then

k′

b
VB(Γ)− b =

r′

v′
VT(Γ)− v′;

VBT(Γ) =
2b
v′

VT(Γ) +
v′

k′
(b− v′ − 1),

so VB(Γ) and VBT(Γ) are both increasing functions of VT(Γ).

Consequence

For any given k′, use the core subdesign Γ which minimizes VT(Γ).

12/34



Sum of variances in whole design if Γ is equi-replicate

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)
VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one variety and one block in Γ.

If Γ is equi-replicate with replication r′ then

k′

b
VB(Γ)− b =

r′

v′
VT(Γ)− v′;

VBT(Γ) =
2b
v′

VT(Γ) +
v′

k′
(b− v′ − 1),

so VB(Γ) and VBT(Γ) are both increasing functions of VT(Γ).

Consequence

For any given k′, use the core subdesign Γ which minimizes VT(Γ).
12/34



Sum of variances in whole design if there are many drones

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one variety and one block in Γ.

Consequence

If v is large then n is large, so we need to focus on reducing VB(Γ),
so it may be best to increase the number of drones
and decrease k′ (the size of blocks in the core subdesign Γ),
so that average replication within Γ is more than 2.

13/34



Sum of variances in whole design if there are many drones

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one variety and one block in Γ.

Consequence

If v is large then n is large, so we need to focus on reducing VB(Γ),
so it may be best to increase the number of drones
and decrease k′ (the size of blocks in the core subdesign Γ),
so that average replication within Γ is more than 2.

13/34



An example of this non-intuitive result

If there are 4(2 + n) varieties in 4 blocks of size 4 + n,
the design on the left is A-better than the design on the right
if and only if n < 50.

1 2 3 4 n drones

1 2 5 6 n drones

3 6 7 8 n drones

4 5 7 8 n drones

1 2 3 n + 1 drones

1 2 4 n + 1 drones

1 3 4 n + 1 drones

2 3 4 n + 1 drones

Note that the core subdesign Γ on the right is
the dual of a balanced incomplete-block design because every
pair of blocks have the same number of varieties in common.
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A definite result

Theorem
Suppose that we are given b blocks of size k, and v varieties.
For i = 1, 2, let design ∆i have core subdesign Γi with block size ki,
where k1 > k2.
If Γ1 is the dual of a balanced incomplete-block design
then ∆2 is worse than ∆1 on the A criterion,
no matter how big v is.
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An example of the good result

If there are 4n + 6 varieties in 4 blocks of size 3 + n,
the design on the left is A-better than the design on the right,
for all values of n.

1 2 3 n drones

1 4 5 n drones

2 4 6 n drones

3 5 6 n drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones
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Strategy

Given b, v and k, how do we find an A-optimal design
for v varieties in b blocks of size k when

bk
2
≤ v ≤ b(k− 1) + 1?

Average replication ≤ 2 Maximum v for estimability

Case 1. b = 2 or b = 3 (very small b).
Case 2. v = b(k− 1) + 1 or v = b(k− 1) (very large v).
Case 3. k0 ≥ b− 1.
Case 4. 2 < k0 < b− 1 (small k0 but not Case 2).

k0 = k−
⌊

2v− bk
b

⌋
= biggest space per block for non-drones.
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Case 1. Only 2 blocks, of size k

Morgan and Jin (2007) showed that the A-optimal designs are
those with 2n drones and q queen bees,
where n = n0 = v− k and q = k′ = k0 = k− n0 = 2k− v.

1 2 3 4 . . . q A1 A2 A3 . . . An

1 2 3 4 . . . q B1 B2 B3 . . . Bn
queens drones
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Case 1 continued. 3 blocks of size k

Using the nice theorem, RAB has shown that
the A-optimal designs are as follows when v is divisible by 3
(and presumably small changes deal with the other cases).
There are 3w workers and 3n drones,
where 3w = 3k− v and n = n0 = k− 2w and k′ = k0 = 2w.

1 2 4 5 . . . 3w− 2 3w− 1 A1 A2 A3 . . . An

1 3 4 6 . . . 3w− 2 3w B1 B2 B3 . . . Bn

2 3 5 6 . . . 3w− 1 3w C1 C2 C3 . . . Cn

w copies of design using
all pairs from 3 drones
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Case 2. v = b(k− 1) + 1

This is the maximum number of varieties that can be tested in
b blocks of size k with all comparisons estimable.

Mandal, Shah and Sinha (1991), for k = 2,
and Bailey and Cameron (2013), for general block size,
showed that, no matter how many blocks there are,
the A-optimal design has the following form.

1 A1 A2 A3 . . . Ak−1

1 B1 B2 B3 . . . Bk−1

1 C1 C2 C3 . . . Ck−1

1 D1 D2 D3 . . . Dk−1

1 E1 E2 E3 . . . Ek−1

1 queen v− 1 drones
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Case 2 continued. v = b(k− 1)

The A-optimal designs were found for all cases
by Krafft and Schaefer (1997).

small k and b

increase k if b ≥ 5 then increase b

1 2 A1

2 3 B1

3 4 C1

4 5 D1

5 6 E1

6 1 F1
chain

1 2 A1 A2

2 3 B1 B2

3 1 C1 C2

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

smaller
chain

1 2 A1 A2

1 2 B1 B2

1 C1 C2 C3

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

1 G1 G2 G3

1 queen

Youden and Connor (1953) had recommended chain designs.
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Case 3. k ≥ k0 ≥ b− 1

For simplicity, assume that b divides 2v, so that

n0 =
2v− bk

b
= minimum number of drones per block.

Then
b(2k− b + 1)

2
≥ v ≥ bk

2
≥ b(b− 1)

2
.

Let Γ0 be the design for b(b− 1)/2 varieties
replicated twice in b blocks of size b− 1
in such a way that
there is one variety in common to each pair of blocks.
This is the dual of a balanced-incomplete block design
and so is A-optimal for these numbers.
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Case 3 continued. k ≥ k0 ≥ b− 1

If k0 = s(b− 1) then take Γ to be s copies of Γ0.
The resulting whole design ∆ is always A-optimal.
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Case 3 continued. k ≥ k0 ≥ b− 1

If k0 > b− 1 but k0 is not a multiple of b− 1,
then the following strategy seems likely to be good
(but ∆ is not A-optimal when b = k0 = 4 and v is very large).

n0 = minimal number of drones per block.

Construction Method

1. put n0 drones in each block;
2. put in one copy of Γ0;
3. put in as many further copies of Γ0 as possible;
4. in any remaining space,

use a good design for workers with replication 2
(so long as there is at least one copy of Γ0,
it probably doesn’t make much difference which one is used).
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

60 varieties: all workers (n0 = 0)

1 2 3 4 5 6 7 29 30 31 32 33 34 35 57

1 8 9 10 11 12 13 29 36 37 38 39 40 41 57

2 8 14 15 16 17 18 30 36 42 43 44 45 46 58

3 9 14 19 20 21 22 31 37 42 47 48 49 50 58

4 10 15 19 23 24 25 32 38 43 47 51 52 53 59

5 11 16 20 23 26 27 33 39 44 48 51 54 55 59

6 12 17 21 24 26 28 34 40 45 49 52 54 56 60

7 13 18 22 25 27 28 35 41 46 50 53 55 56 60
one copy of Γ0 another copy of Γ0
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

76 varieties: 44 workers, 32 drones (n0 = 4)

1 2 3 4 5 6 7 29 30 31 32 A1 A2 A3 A4

1 8 9 10 11 12 13 33 34 35 36 B1 B2 B3 B4

2 8 14 15 16 17 18 37 38 39 40 C1 C2 C3 C4

3 9 14 19 20 21 22 41 42 43 44 D1 D2 D3 D4

4 10 15 19 23 24 25 29 33 37 41 E1 E2 E3 E4

5 11 16 20 23 26 27 30 34 38 42 F1 F2 F3 F4

6 12 17 21 24 26 28 31 35 39 43 G1 G2 G3 G4

7 13 18 22 25 27 28 32 36 40 44 H1 H2 H3 H4
Γ0 16 workers drones

replication 2
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

92 varieties: 28 workers, 64 drones (n0 = 8)

1 2 3 4 5 6 7 A1 A2 A3 A4 A5 A6 A7 A8

1 8 9 10 11 12 13 B1 B2 B3 B4 B5 B6 B7 B8

2 8 14 15 16 17 18 C1 C2 C3 C4 C5 C6 C7 C8

3 9 14 19 20 21 22 D1 D2 D3 D4 D5 D6 D7 D8

4 10 15 19 23 24 25 E1 E2 E3 E4 E5 E6 E7 E8

5 11 16 20 23 26 27 F1 F2 F3 F4 F5 F6 F7 F8

6 12 17 21 24 26 28 G1 G2 G3 G4 G5 G6 G7 G8

7 13 18 22 25 27 28 H1 H2 H3 H4 H5 H6 H7 H8

Γ0 drones
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Case 4. 2 < k0 < b− 1

For various values of ki ≤ k0,
find the best core subdesign Γi for v′i varieties in b blocks of
size ki.

(For equi-replicate core subdesigns,
it is often easier to find the best dual design, which is obtained
by interchanging the roles of blocks and varieties.)

VT(Γi) = the sum of the variances of variety differences in Γi

VB(Γi) = the sum of the variances of block differences in Γi

VBT(Γi) = the sum of the variances of sums of
one variety and one block in Γi.

If there are ni drones in each block then, in the whole design ∆,

VT(∆) = bni(bni + v′i − 1) + VT(Γi) + niVBT(Γi) + n2
i VB(Γi).

Use this formula to find the core subdesign which gives the
smallest VT(∆).
As the number of varieties increases, it becomes more
important to choose Γi with a small value of VB(Γi).
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Case 4 continued. k0 = 4 < b− 1, VB(Γi)÷ b(b− 1)/2
Best design for b blocks known to RAB

Γ1 Γ2 Γ3 Γ4
ki 2 3 3 4

2 queens, 2 queens, b workers 2b workers
both boring 2 workers (rep 2) rep 3 rep 2

b− 4 drones
b = 6 1 1− 0.85 0.87
b = 7 1 1− 0.86 0.92
b = 8 1 1− 0.89 0.93
b = 9 1 1− 0.92
b = 10 1 1−

b = 11 1 1−

b = 12 1 1− 0.98
b = 13 1 1− 1 1.07
b = 14 1 1−

b = 15 1 1− 1.01 1.08

As v increases, Γ3 becomes better than Γ4.
If b ≥ 14, then, as v increases, Γ1 and Γ2 become better than Γ3.
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Case 4 continued. 2 < k0 < b− 1 when b = 8:
k0 = 6 so v = 8k− 24

k = k0 = 6, and 24 varieties, all workers, all replicated twice.

A 1 2 3 4 5 6

B 7 8 9 10 11 12

C 1 7 13 14 15 16

D 2 8 17 18 19 20

E 3 9 13 17 21 22

F 4 10 14 18 23 24

G 5 11 15 19 21 23

H 6 12 16 20 22 24

(One worker for each pair of blocks
except for {A, B}, {C, D}, {E, F} and {G, H}.)
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Case 4 continued. k = 5 and k = 6 when b = 8:
k0 = 5 so v = 8k− 20

k = 5 k = 6
20 varieties: 28 varieties:

20 workers, no drones 20 workers, 8 drones

1 2 3 4 5

6 7 8 9 10

1 11 12 13 14

2 6 15 16 17

3 7 11 18 19

4 8 12 15 20

5 9 13 16 18

10 14 17 19 20

1 2 3 4 5 A1

6 7 8 9 10 B1

1 11 12 13 14 C1

2 6 15 16 17 D1

3 7 11 18 19 E1

4 8 12 15 20 F1

5 9 13 16 18 G1

10 14 17 19 20 H1
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Case 4 continued. k = 5 and k = 6 when b = 8:
k0 = 4 so v = 8k− 16

k = 5 k = 6
24 varieties: 32 varieties:

16 workers, 8 drones 8 workers, 24 drones

1 2 3 4 A1

5 6 7 8 B1

9 10 11 12 C1

13 14 15 16 D1

1 5 9 13 E1

2 6 10 14 F1

3 7 11 15 G1

4 8 12 16 H1
k′ = 4
rep = 2

1 2 4 A1 A2 A3

2 3 5 B1 B2 B3

3 4 6 C1 C2 C3

4 5 7 D1 D2 D3

5 6 8 E1 E2 E3

6 7 1 F1 F2 F3

7 8 2 G1 G2 G3

8 1 3 H1 H2 H3

k′ = 3
rep 3
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Case 4 continued. k = 5 and k = 6 when b = 8:
k0 = 3 so v = 8k− 12

k = 5 k = 6
28 varieties: 36 varieties:

12 workers, 16 drones 12 workers, 24 drones

1 2 3 A1 A2

1 4 5 B1 B2

4 6 7 C1 C2

6 8 9 D1 D2

2 8 10 E1 E2

5 10 11 F1 F2

7 11 12 G1 G2

3 9 12 H1 H2

1 2 3 A1 A2 A3

1 4 5 B1 B2 B3

4 6 7 C1 C2 C3

6 8 9 D1 D2 D3

2 8 10 E1 E2 E3

5 10 11 F1 F2 F3

7 11 12 G1 G2 G3

3 9 12 H1 H2 H3
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Health Warnings

The overall message is that there can be phase changes
as the spare capacity for replication (bk− v) decreases.
Therefore it is necessary to compare core subdesigns Γi which
have different block size ki.

Although this overall message is correct,
no one but me has checked the arithmetic in the examples
presented,
so individual cases may be wrong.

This is work is progress, not a finished project.
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