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Current Statistics training

Traditional training in Statistics is often

• very general (MSc level)

• highly specialised (PhD level)

• completely isolated from practice

• neglecting transferable skills



What is IDEAS

• Pan-European training network

• Focus on early drug development

• Close interaction between academia



Objectives

a) train early-stage researchers in state of the art methods for
designing, evaluating and analysing early phase studies

b) develop novel methodology for early phase studies through
individually supervised, collaborative, research projects

c) provide an international, collaborative environment in which
the academic research experience is paired with the
challenges of undertaking drug development within the
private sector

d) raise awareness about cutting edge methods for designing
and analysing early phase studies among trialists and
clinicians alike



Set-up

• 5 academic partners

• 3 industry partners

• Several associated partners (mostly industry)

• 14 early stage researchers (ESRs)



Training

(i) individually supervised research projects

(ii) transnational, cross-sectorial secondments

(iii) network-wide training activities

(iv) individual training activities



Secondments

• Cross-sectorial

• Cross-national

• Minimum 3 months

• Research and daily work



Network-wide training

• A week-long kick-off event

• three week-long summer schools

• e-learning courses in statistical methodology

• a think tank

• surgery sessions

• dissemination workshop



Network-wide training

• Statistics

• Practical skills

• Networking



More on IDEAS

Website www.ideas-itn.eu

email ideas@lancaster.ac.uk
Twitter @IDEAS ITN

www.ideas-itn.eu


Motivation (I)

Consider a trial with two arms and binary outcomes which
aims to find the superior arm.

An example
• 10 outcomes observed for each arm
• 4 successes on 1st arm
• 6 successes on 2st arm

Q: To which arm a next patient should be assigned?

We would like to
• make a reliable recommendation (high statistical power)
• maximize the proportion of the population on the superior

arm

“Earn vs Learn“ trade-off
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Motivation (II)

1. Option 1. Earn
Assign next patients to 2nd arm

Challenges:
• Selection can lock in the suboptimal arm
• Low statistical power

2. Option 2. Learn
Assign next patient to arm we know least about (e.g. the
Shannon information)

Challenges:
• Unethical (low number of treated patients)
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Current approaches

• Fixed randomization
• Randomized play the winner
• Current belief (maximum point estimate)
• Optimal multi-arm bandit (MAB) with dynamic programming



Back to information measures

The Shannon information (entropy)

h(f ) = −
∫
R

f (z)logf (z)dz.

In the example above,

h(arm 1) = h(arm 2).

This information does not reflect our specific interest in the
superior arm

It shows the amount of information needed to answer the
question

What is the success probability?
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Weighted information

Consider a two-fold experiment:

(i) what is the probability of success

(ii) is the probability of success close to a target, γ

A: The weighted Shannon information

hφ(f ) = −
∫
R
φ(z)f (z)logf (z)dz.
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Weight Function

The Beta-form weight function

φn(p) = Λ(γ, x ,n)pγ
√

n(1− p)(1−γ)
√

n. (1)



Methods

• Model probability of success with a Beta distribution
• α is the true probability of success
• γ is the target probability (for instance, γ = 0.999)

Theorem
Let h(fn) and hφn (fn) be the standard and weighted differential
entropies. Then,

lim
n→∞

([
hφn (fn)− h(fn)

]
− 1

2

(
(α− γ)2

α(1− α)

)
n2κ−1 + ω

)
= 0
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Design

δ̂
(κ)
nj

=
(p̂nj − γ)2

p̂nj (1− p̂nj )
n2κ−1

j

Arm selection algorithm:

1. Start from δ̂
(κ)
βi

, i = 1, . . . ,m
2. Observed ni and xi outcomes for the arm Ai , i = 1, . . . ,m
3. Arm Aj is selected if it satisfies

δ̂
(κ)
nj

= inf
i=1,...,m

δ̂
(κ)
ni
.

4. Repeat 2-3 until the total number of patients is reached.

Note: Randomize in case of tie.



Illustration. Two arms trial

Consider the trial with m = 2 arms (α1 = 0.5 and α2 = 0.7),
n = 75 patients

Prior : p̂ = (0.99,0.99); β = (2,2)

Alternative: Constrained rand. dynamic programming
(Williamson et.al, 2016)
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Numerical study

We consider two trials with m = 4 treatments (Villar et.al, 2015)
Trial 1: N1 = 423, p = [0.3,0.3,0.3,0.5]T

Trial 2: N2 = 80, p = [0.3,0.4,0.5,0.6]T.

Hypothesis H0 : p0 ≥ pi for i = 1,2,3

with the family-wise error rate calculated at p0 = . . . = p3 = 0.3

Prior : p̂ = (0.99,0.99,0.99,0.99); β = (5,2,2,2)

We study:
• the type-I error rate (α)
• statistical power (1− η)
• expected number of successes (ENS)

Comparators:
• MAB approach based on the Gittins index
• Fixed randomization



Numerical study. Results

Trial 1

Method H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = p1 = p2 = 0.3, p3 = 0.5
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

MAB 0.05 0.25 (0.18) 126.7 (9.4) 0.43 0.83 (0.10) 198.3 (13.7)
WE (κ = 0.55) 0.05 0.22 (0.20) 126.9 (9.4) 0.55 0.83 (0.18) 197.1 (17.8)

FR 0.05 0.25 (0.02) 126.9 (9.4) 0.82 0.25 (0.02) 147.9 (9.6)
WE (κ = 0.65) 0.05 0.23 (0.13) 126.9 (9.4) 0.87 0.74 (0.10) 189.3 (13.7)
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Numerical study. Results

Trial 2

Method p0 = p1 = p2 = p3 = 0.3 p0 = 0.3, p1 = 0.4, p2 = 0.5, p3 = 0.6
α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

MAB 0.00 0.25 (0.13) 24.0 (4.10) 0.00 0.49 (0.21) 41.6 (5.4)
WE (κ = 0.55) 0.01 0.20 (0.15) 24.0 (4.10) 0.11 0.50 (0.27) 40.7 (5.9)

FR 0.05 0.25 (0.04) 24.0 (4.10) 0.50 0.25 (0.04) 36.0 (4.3)
WE (κ = 0.65) 0.05 0.24 (0.07) 24.0 (4.05) 0.52 0.47 (0.21) 40.2 (4.8)
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Conclusion

• Simple, intuitively clear, can be computed by
non-statisticians
• Penalty parameter κ reflects the trade-off between ENS and

Power
• Performs better than currently used approaches

MAB FR
Power higher same
ENS same higher

• Can be applied to any trial with the target γ ∈ (0,1)

• Theoretical result: the design is consistent
• The criterion can be generalized for multinomial outcomes


