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Multiple testing procedures using joint distribution

EMA draft “Guideline on multiplicity issues in clinical trials”:

“Controlling the type I error rate study-wise is frequently
done by splitting the accepted and pre-specified type I error rate
α and by then testing the various null hypotheses at fractions of
α [...] Other test procedures are available, that can be more
powerful if the correlation between the test statistics are
taken into account, e.g. the Dunnett’s test on multiple
comparisons to a single control.”

FDA draft guidance on “Multiple Endpoints in Clinical Trials”:

“Because it is difficult to know the true correlation structure
among different endpoints (not simply the observed correlations
within the dataset of the particular study), it is generally not
possible to statistically adjust (relax) the Type I error rate
for such correlations.”

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 2/22



Design setting

• Interest: Comparing two endpoints (1,2) between two groups (T,C)

• Null hypotheses:

Endpoint 1: H1 : µT
1 ≤ µC

1 vs. H ′1 : µT
1 > µC

1

Endpoint 2: H2 : µT
2 ≤ µC

2 vs. H ′2 : µT
2 > µC

2

• Control of familywise error rate (FWER) at α = 0.025

• The observations YYY j
i = (Y j

i1,Y
j
i2), j ∈ {T ,C}, i = 1, ..., n, are

independently standard normally distributed with mean

(
µj

1

µj
2

)
and

covariance matrix ΣΣΣ =

(
1 ρ
ρ 1

)
• Problem: same but unknown correlation ρ between endpoints

• Distribution of the z statistics ZZZ = (Z1,Z2) ∼ N((θ1, θ2),ΣΣΣ)
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Dealing with the unknown correlation

1. Adjust for fixed assumed correlation:
The critical values are calculated for some assumed correlation. If ρ
is misspecified, this may result in an inflation of the FWER above
the pre-specified α level.

2. Plug-in estimated correlation:
An estimate of the correlation between the endpoints can be used to
derive the critical values. Depending on the distribution of the
estimator, this may also inflate the α level. Asymptotically the
method controls the FWER for a consistent estimator.

3. Apply improved Berger and Boos method:
The type I error rate is maximized over a confidence interval of ρ.
The significance level is adjusted for the coverage probability such
that the overall type I error rate is controlled at level α.
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Critical values for known true correlation ρ

If the true correlation ρ between the test statistics is known (e.g.
Dunnett test), the critical values can be calculated under the global point
null hypothesis H0 : δ1 = δ2 = 0:

1− PH0,ρ(Z1 ≤ c1(ρ, α),Z2 ≤ c2(ρ, α)) = α

≥ 1− Pδ1≤0,δ2≤0,ρ(Z1 ≤ c1(ρ, α),Z2 ≤ c2(ρ, α))

For equal critical values:
c1(ρ, α) = c2(ρ, α) = c(ρ, α)
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Improvement due to correlation compared to Bonferroni
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Correlation between endpoints is
usually unknown, but often assumed
known: Tamhane (2010), Kunz
(2015), Li (2017)

Disjunctive power, θ1 = θ2 = θ
ρ θmax power difference

0.5 1.8 0.013
0.7 1.9 0.026
0.9 2.0 0.054
1 2.1 0.112

Sample size for power=0.8
ρ sample size improvement

0.5 2.2%
0.7 4.5%
0.9 9.0%
1 17.4%
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Dealing with the unknown correlation

1. Adjust for fixed assumed correlation:
The critical values are calculated for some assumed correlation. If ρ
is misspecified, this may result in an inflation of the FWER above
the pre-specified α level.

2. Plug-in estimated correlation:
An estimate of the correlation between the endpoints can be used to
derive the critical values. Depending on the distribution of the
estimator, this may also inflate the α level. Asymptotically the
method controls the FWER for a consistent estimator.

3. Apply improved Berger and Boos method:
The type I error rate is maximized over a confidence interval of ρ.
The significance level is adjusted for the coverage probability such
that the overall type I error rate is controlled at level α.
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Type I error rate assuming certain correlation
r . . . assumed correlation, ρ . . . true correlation, H0 : δ1 = δ2 = 0

The inflation in type I error rate is maximal for equal critical values:
Calculation of critical values: 1− PH0,r (Z1 ≤ c(r , α),Z2 ≤ c(r , α)) = α
Type I error rate: FWER(ρ) = 1− PH0,ρ(Z1 ≤ c(r , α),Z2 ≤ c(r , α))

• The type I error rate decreases
with the true correlation ρ, lies
above α = 0.025 for ρ < r and
is maximal for ρ = −1.

• The type I error rate increases
with the assumed correlation r
and is maximal for r = 1.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 8/22



Type I error rate assuming certain correlation
r . . . assumed correlation, ρ . . . true correlation, H0 : δ1 = δ2 = 0

The inflation in type I error rate is maximal for equal critical values:
Calculation of critical values: 1− PH0,r (Z1 ≤ c(r , α),Z2 ≤ c(r , α)) = α
Type I error rate: FWER(ρ) = 1− PH0,ρ(Z1 ≤ c(r , α),Z2 ≤ c(r , α))

• The type I error rate decreases
with the true correlation ρ, lies
above α = 0.025 for ρ < r and
is maximal for ρ = −1.

• The type I error rate increases
with the assumed correlation r
and is maximal for r = 1.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 8/22



Type I error rate assuming certain correlation

r . . . assumed correlation, ρ . . . true correlation, H0 : δ1 = δ2 = 0

The inflation in type I error rate is maximal for equal critical values:
Calculation of critical values: 1− PH0,r (Z1 ≤ c(r , α),Z2 ≤ c(r , α)) = α
Type I error rate: FWER(ρ) = 1− PH0,ρ(Z1 ≤ c(r , α),Z2 ≤ c(r , α))

• The type I error rate decreases
with the true correlation ρ, lies
above α = 0.025 for ρ < r and
is maximal for ρ = −1.

• The type I error rate increases
with the assumed correlation r
and is maximal for r = 1.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 8/22



Type I error rate assuming certain correlation

r . . . assumed correlation, ρ . . . true correlation, H0 : δ1 = δ2 = 0

The inflation in type I error rate is maximal for equal critical values:
Calculation of critical values: 1− PH0,r (Z1 ≤ c(r , α),Z2 ≤ c(r , α)) = α
Type I error rate: FWER(ρ) = 1− PH0,ρ(Z1 ≤ c(r , α),Z2 ≤ c(r , α))

• The type I error rate decreases
with the true correlation ρ, lies
above α = 0.025 for ρ < r and
is maximal for ρ = −1.

• The type I error rate increases
with the assumed correlation r
and is maximal for r = 1.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 8/22



Dealing with the unknown correlation

1. Adjust for fixed assumed correlation:
The critical values are calculated for some assumed correlation. If ρ
is misspecified, this may result in an inflation of the FWER above
the pre-specified α level.

2. Plug-in estimated correlation:
An estimate of the correlation between the endpoints can be used to
derive the critical values. Depending on the distribution of the
estimator, this may also inflate the α level. Asymptotically the
method controls the FWER for a consistent estimator.

3. Apply improved Berger and Boos method:
The type I error rate is maximized over a confidence interval of ρ.
The significance level is adjusted for the coverage probability such
that the overall type I error rate is controlled at level α.
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Type I error rate plugging in estimated correlation

• If we plug in the estimate of the correlation between the endpoints
the FWER would be:

FWER(ρ) = 1−
∫

PH0,ρ(Z1 ≤ c(r̂ , α),Z2 ≤ c(r̂ , α)|r̂)fρ(r̂)dr̂

with critical values calculated solving

1− PH0,r̂ (Z1 ≤ c(r̂ , α),Z2 ≤ c(r̂ , α)) = α

• When using a consistent estimator of ρ the FWER for large sample
sizes is asymptotically controlled.

• For small sample sizes the inflation in type I error rate depends on
the whole distribution of the estimator.
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Calculate a sample estimate of the correlation

Averaging across Pearson correlation estimates from two samples r̂C , r̂T :
r̂j = 1

n−1

∑n
i=1(Y j

i1 − Ȳ j
1 )(Y j

i2 − Ȳ j
2 ), j ∈ {C ,T} and Ȳ j

k = 1
n

∑n
i=1 Y

j
ik

Different estimators for correlation estimation

r̂pool r̂pool = r̂C +r̂T
2 pooled

r̂blind r̂blind = 1
2n−1

∑
j∈{C ,T}

∑n
i=1(Y j

i1 − Ȳ j
1 )(Y j

i2 − Ȳ j
2 ) blinded

r̂Fisher zj = 1
2 ln
(

1+r̂j
1−r̂j

)
→ z̄ = zC +zT

2 → r̂Fisher = e2z̄−1
e2z̄+1 Fisher

r̂OP r̂OP = 1
2

∑
j∈{C ,T}

(
r̂j +

r̂j (1−r̂2
j )

2(n−3)

)
Olkin Pratt

Alexander (1990)
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Distribution of estimators

n=5, δ1 = δ2 = 0, 105 simulation runs

Bias Mean squared error
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Kunz (2017)
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Type I error rate for different estimators

n=5, δ1 = δ2 = 0, 107 simulation runs, equal critical values
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Type I error rate for different estimators

n=10, δ1 = δ2 = 0, 107 simulation runs, equal critical values
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Type I error rate for different estimators

n=15, δ1 = δ2 = 0, 107 simulation runs, equal critical values
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Type I error rate for different estimators

n=20, δ1 = δ2 = 0, 107 simulation runs, equal critical values
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Power of plug-in methods

equal critical values, n=5, n=20 , θ1 = θ2 = 2, α′...adjusted level

method ρ
plug-in α′ 0 0.2 0.4 0.6 0.8 0.9 0.99
r̂blind 0.0235 0.643 0.617 0.592 0.567 0.541 0.527 0.511
r̂pool 0.0241 0.641 0.614 0.588 0.561 0.535 0.520 0.508

r̂Fisher 0.0235 0.640 0.614 0.588 0.563 0.537 0.524 0.510
r̂OP 0.0233 0.638 0.612 0.587 0.563 0.539 0.526 0.504
r̂blind 0.0245 0.644 0.617 0.591 0.565 0.540 0.527 0.515
r̂pool 0.0247 0.645 0.617 0.590 0.564 0.538 0.526 0.511

r̂Fisher 0.0245 0.636 0.609 0.582 0.556 0.532 0.519 0.507
r̂OP 0.0247 0.645 0.617 0.590 0.565 0.539 0.527 0.515

Bonf. 0.025 0.645 0.615 0.583 0.548 0.504 0.474 0.405
known ρ 0.025 0.647 0.619 0.592 0.565 0.541 0.528 0.516
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Dealing with the unknown correlation

1. Adjust for fixed assumed correlation:
The critical values are calculated for some assumed correlation. If ρ
is misspecified, this may result in an inflation of the FWER above
the pre-specified α level.

2. Plug-in estimated correlation:
An estimate of the correlation between the endpoints can be used to
derive the critical values. Depending on the distribution of the
estimator, this may also inflate the α level. Asymptotically the
method controls the FWER for a consistent estimator.

3. Apply improved Berger and Boos method:
The type I error rate is maximized over a confidence interval of ρ.
The significance level is adjusted for the coverage probability such
that the overall type I error rate is controlled at level α.
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Improved Berger Boos method for unknown ρ

Algorithm for the improved Berger Boos procedure:

1. Choose a confidence width 1− ε.

2. Calculate the lower bound r l of an 1− ε confidence interval for the
unknown correlation ρ, i.e. PH0,ρ(ρ ≥ r l) ≥ 1− ε.

3. Use this lower bound to calculate the critical boundaries by solving
1− PH0,r l (Z1 ≤ c(r l , α′),Z2 ≤ c(r l , α′)) = α

1+ε =: α′

It can be shown that this procedure strongly controls the FWER:

FWER(ρ) =

∫ 1

−1

(1− PH0,ρ(Z1 ≤ c(r l , α′),Z2 ≤ c(r l , α′)|r l))fρ(r l)dr l

≤ α if α′ =
α

1 + ε
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Improved Berger Boos method for unknown ρ

• The original Berger Boos method also maximizes the type I error
rate over a confidence interval, but chooses α′ = α− εα′ = α− εα′ = α− ε. This
corresponds to a less sharp inequality.

• The improvement is possible due to the fact that for the bivariate
normal distribution the sample mean and the sample correlation
are independent.

• The maximal type I error due to misspecification of ρ is 2α′ and the
boundaries are decreasing respectively the type I error rate is
increasing with the assumed correlation.

• The lower bound r l of the confidence interval can e.g. be calculated
for r̂blind using Fisher’s arctan hyperbolic transformation.
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Disjunctive power of the Berger Boos method I

equal critical values, θ1 = θ2 = 2, r̂blind , n = 5 → δ1 = δ2 = 1.26

1− ε ρ
0 0.2 0.4 0.6 0.8 0.9 0.99

1 0.645 0.615 0.583 0.548 0.504 0.474 0.426
0.99 0.644 0.614 0.583 0.550 0.514 0.497 0.498
0.98 0.642 0.613 0.582 0.550 0.515 0.500 0.499
0.97 0.641 0.611 0.581 0.549 0.516 0.501 0.500
0.96 0.639 0.610 0.579 0.548 0.516 0.502 0.499
0.95 0.638 0.608 0.579 0.547 0.516 0.502 0.499
0.94 0.636 0.607 0.577 0.547 0.516 0.502 0.498
0.93 0.634 0.606 0.576 0.546 0.516 0.502 0.498
0.92 0.633 0.604 0.575 0.545 0.515 0.502 0.497
0.91 0.632 0.603 0.574 0.544 0.514 0.501 0.496
0.90 0.630 0.601 0.573 0.543 0.514 0.501 0.495

Bonferroni 0.646 0.615 0.583 0.548 0.504 0.474 0.427
known ρ 0.647 0.619 0.592 0.565 0.541 0.528 0.517
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Disjunctive power of the Berger Boos method II

equal critical values, r̂blind , θ1 = θ2 = 2, n = 20 → δ1 = δ2 = 0.63

1− ε ρ
0 0.2 0.4 0.6 0.8 0.9 0.99

1 0.645 0.615 0.583 0.548 0.504 0.474 0.427
0.99 0.644 0.614 0.584 0.553 0.524 0.511 0.507
0.98 0.642 0.613 0.583 0.553 0.524 0.511 0.507
0.97 0.641 0.611 0.582 0.552 0.523 0.511 0.506
0.96 0.639 0.610 0.580 0.551 0.523 0.511 0.505
0.95 0.637 0.608 0.579 0.550 0.522 0.510 0.504
0.94 0.636 0.607 0.578 0.549 0.521 0.509 0.503
0.93 0.634 0.605 0.576 0.548 0.520 0.508 0.502
0.92 0.633 0.604 0.575 0.546 0.519 0.507 0.500
0.91 0.631 0.602 0.574 0.545 0.518 0.506 0.499
0.90 0.629 0.601 0.572 0.544 0.517 0.505 0.498

Bonferroni 0.646 0.615 0.583 0.548 0.504 0.474 0.427
known ρ 0.647 0.619 0.592 0.565 0.541 0.528 0.517

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 19/22



How to choose the width 1− ε of the confidence interval

0.0 0.1 0.2 0.3 0.4 0.5

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

ε

cr
iti

ca
l v

al
ue

r̂=0.5   
r̂=0.8   
r̂=0.9   

n=5
n=20
n=100

• A small choice of ε would be
reasonable to improve the
power for moderate and high
correlations.

• The lower ε the larger the
confidence interval over which the
supremum must be taken, but the
higher the significance level for
which to calculate c.

• For ε = 0 the lower bound is
r l = −1 and the boundaries would
be Bonferroni boundaries.

• Choosing ε after observing the data
such that the critical value is
minimized may lead to an alpha
inflation.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 20/22



Summary and Extensions

• Assuming a certain correlation:
The type I error rate can double and the improvement in power
compared to Bonferroni lies below 11.2 percentage points.

• Plugging-in an estimate for the correlation:
There is a marginal inflation in type I error rate, which decreases for
higher sample sizes. An adjusted significance level could be used to
exactly control the FWER.

• Applying the improved Berger Boos method:
The type I error rate can be controlled, but the improvement in
power is less than when the correlation is known and depends on the
chosen width 1− ε of the confidence interval.

• Extensions:

• T-distributed test statistics for unknown variance
• More than two endpoints with different covariance structures

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 21/22



References

[1] R. A. Alexander. A note on averaging correlations. Bulletin of the Psychonomic
Society, 28(4):335–336, 1990.

[2] R. L. Berger and D. D. Boos. P values maximized over a confidence set for the
nuisance parameter. Journal of the American Statistical Association,
89(427):1012–1016, 1994.

[3] C. U. Kunz, T. Friede, N. Parsons, S. Todd, and N. Stallard. A comparison of
methods for treatment selection in seamless phase II/III clinical trials incorporating
information on short-term endpoints. Journal of Biopharmaceutical Statistics,
25(1):170–189, 2015.

[4] C. U. Kunz, N. Stallard, N. Parsons, S. Todd, and T. Friede. Blinded versus
unblinded estimation of a correlation coefficient to inform interim design
adaptations. Biometrical Journal, 59(2):344–357, 2017.

[5] X. Li, M. S. Wulfsohn, and G. G. Koch. Considerations on testing secondary
endpoints in group sequential design. Statistics in Biopharmaceutical Research,
9(4):333–337, 2017.

[6] A. C. Tamhane, Y. Wu, and C. R. Mehta. Adaptive extensions of a two-stage
group sequential procedure for testing primary and secondary endpoints (i):
unknown correlation between the endpoints. Statistics in Medicine,
31(19):2027–2040, 2012.

Testing endpoints with unknown correlation

Section for Medical Statistics, CEMSIIS, Medical University of Vienna 22/22



MinP permutation test

• Conditionally and unconditionally controls the type I error rate:

P(p ≤ α|F̂ (y)) = α

FWER =

∫
P(p ≤ α|F̂ (y))f (y)dy = α

• With large sample sizes the permutation distribution must be
randomly sampled out of all possible permutations and therefore, the
permutation test is then only exact up to simulation error which can
be made arbitrarily small by sufficient sampling.

• Re-sampling based testing procedures always test the strong null
hypothesis of H0 : FT = FC with F j , j = T ,C , being the joint
distribution of the test statistics in the treatment respectively the
control group.
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Power of the MinP permutation test

• Due to the discreteness of the permutation distribution the actual
type I error rate can be a bit less than the nominal significance level
which negatively affects the power.

• As the z statistics are not pivotal, the empirical distribution of the t
statistics is a better approximation of the true distribution than for
the z statistics.
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Improved Berger Boos method for nuisance parameter ρ

Theorem (Improved Berger Boos method)

Let r l be the lower bound of an 1− ε confidence interval for ρ under the
null hypothesis, i.e. P0,ρ(ρ ≥ r l) ≥ 1− ε and let fρ(r l) be its probability
density function. If the critical value c(r l) is chosen according to
1− P0,r l (ZZZ ≤ c(r l)) ≤ α′ = α

1+ε then

FWER(ρ) =
∫ 1

−1
(1− P0,ρ(ZZZ ≤ c(r l)))fρ(r l)dr l ≤ α.

FWER(ρ) =

∫ 1

−1

(1− P0,ρ(ZZZ ≤ c(r l)))fρ(r l)dr l =∫ ρ

−1

(1− P0,ρ(ZZZ ≤ c(r l)))fρ(r l)dr l +

∫ 1

ρ

(1− P0,ρ(ZZZ ≤ c(r l)))fρ(r l)dr l ≤

(1− P0,ρ(ZZZ ≤ c(ρ)))

∫ ρ

−1

fρ(r l)dr l + (1− P0,ρ(ZZZ ≤ c(1)))

∫ 1

ρ

fρ(r l)dr l

≤ α′(1− ε) + (1− P0,−1(ZZZ ≤ c(1)))ε

≤ α′(1− ε) + 2α′ε = α
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Type I error rate assuming certain correlation II

General formulation of type I error rate:
1− PH0,r (Z1 ≤ c1(r , α),Z2 ≤ c2(r , α)) = α with(

c1(r , α)
c2(r , α)

)
= Φ−1

0,1

(
1− x(r)α

(
w1

w2

))

• The alpha inflation is maximal
for equal critical values
(w1,w2) = (0.5, 0.5).

• For (w1,w2) = (0, 1) ∨ (1, 0),
the correlation does not
influence the critical value and
therefore there is no inflation in
type I error rate.
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Example: n=20, ρ = −0.8

δ1 = δ2 = −10

r̂pool = −0.79
r̂Fisher = −0.8
r̂OP = −0.8
r̂blind = 0.91

δ1 = δ2 = 0

r̂pool = −0.79
r̂Fisher = −0.8
r̂OP = −0.8
r̂blind = −0.8
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Type I error rate of assumed correlation
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Improvement using the correlation
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Improvement for higher dimensions
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Berger Boos for power values around 0.9

equal critical values, θ1 = θ2 = 3.1, n = 20 → δ1 = δ2 = 0.98

ε ρ
0 0.2 0.4 0.6 0.8 0.9

0 0.9619 0.9459 0.9267 0.9037 0.8752 0.8537
0.01 0.9618 0.9453 0.9266 0.9049 0.8832 0.8733
0.02 0.9611 0.9443 0.9266 0.9056 0.8836 0.8734
0.03 0.9607 0.9442 0.9258 0.9049 0.8840 0.8730
0.04 0.9601 0.9437 0.9256 0.9049 0.8829 0.8728
0.05 0.9598 0.9429 0.9246 0.9042 0.8829 0.8725
0.06 0.9594 0.9430 0.9244 0.9041 0.8827 0.8719
0.07 0.9593 0.9421 0.9235 0.9034 0.8816 0.8715
0.08 0.9585 0.9419 0.9235 0.9024 0.8814 0.8709
0.09 0.9580 0.9412 0.9229 0.9020 0.8807 0.8695

0.1 0.9578 0.9407 0.9219 0.9021 0.8799 0.8701
Bonferroni 0.9619 0.9459 0.9267 0.9037 0.8752 0.8537

known ρ 0.9621 0.9465 0.9296 0.9116 0.8927 0.8829

Testing endpoints with unknown correlation
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Disjunctive power for plugging in r̂blind

equal critical values, θ1 = θ2 = 2

rho Bonferroni known correlation r̂blind for n=20 r̂blind for n=5
-1 0.809 0.809 0.804 -0.81 0.805 -0.34

-0.8 0.776 0.776 0.771 -0.62 0.774 -0.21
-0.6 0.739 0.739 0.735 -0.45 0.737 -0.08
-0.4 0.706 0.706 0.702 -0.27 0.709 0.05
-0.2 0.676 0.676 0.674 -0.09 0.675 0.18

0 0.646 0.647 0.645 0.09 0.651 0.30
0.2 0.615 0.619 0.616 0.27 0.623 0.43
0.4 0.583 0.592 0.594 0.45 0.599 0.57
0.6 0.548 0.565 0.567 0.63 0.572 0.71
0.8 0.504 0.541 0.542 0.82 0.545 0.85

1 0.405 0.516 0.512 0.91 0.514 1

Testing endpoints with unknown correlation
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Disjunctive power for plugging in r̂blind

equal critical values, θ1 = θ2 = 3.1

rho Bonferroni known correlation r̂blind for n=20 r̂blind for n=5
-1 1 1 1 1

-0.8 0.9997 0.9997 0.9997 0.9997
-0.6 0.9959 0.9959 0.9960 0.9961
-0.4 0.9876 0.9876 0.9883 0.9884
-0.2 0.9760 0.9760 0.9763 0.9770

0 0.9619 0.9621 0.9622 0.9652
0.2 0.9459 0.9465 0.9463 0.9492
0.4 0.9267 0.9296 0.9326 0.9345
0.6 0.9037 0.9116 0.9117 0.9174
0.8 0.8752 0.8927 0.8924 0.8983

1 0.8537 0.8829 0.8731 0.8718
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