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Abstract: 

The high accuracy of supervised machine learning models is usually achieved by optimizing 
complex, uninterpretable "black-box" architectures, hindering their applicability in fields where 
an understanding of the model and its inner workings is paramount to ensuring user acceptance 
and fairness. Functional decomposition is a well explored tool that improves interpretability by 
splitting the prediction function into a sum of main and interaction effects. Existing 
implementations are often computationally infeasible. We present a novel implementation by 
fitting a neural additive model with DNN-based submodels using the model predictions as 
outcome variable. We enable identifiability and interpretability by orthogonalizing submodels 
against higher-order terms. Information is shifted into the explainable and visualizable lower-
order effects, ensuring that these effects capture as much of the model variance as possible. By 
having minimal prerequisites on DNN architecture and model fitting, the method can be widely 
applied without constraining the learning algorithm and model predictive performance. It also 
yields a variance decomposition of the predictions, giving an intuitive quantification of the 
degree of explainable model variance. We illustrate the use of our method by applying it to an 
ecological dataset, yielding insights into the effects of geological features on the prediction of 
stream biological condition in the U.S. Chesapeake Bay watershed. 


