A Patient-Centric Paradigm for Clinical Research: The DOOR is Open

Toshi Hamasaki, PhD and Scott Evans, PhD

The Biostatistics Center Department of Biostatistics and Bioinformatics Milken Institute School of Public Health George Washington University

Medical University of Vienna Biometric Colloquium April 10, 2025

Council for International Organizations of Medical Sciences (CIOMS)

- Jointly established by the WHO and UNESCO in 1949
- Convened a working group of regulators (including FDA (e.g., Richard Forshee, Hong Yang), PMDA, EMA), industry representatives, and academics
- Publishing "Benefit-risk balance for medicinal products" in 2025
- Two new points of emphasis:
 - 1. Transitioning benefit-risk evaluation from a post-hoc exercise to an a comprehensively integrated element of clinical trial design and conduct, and
 - 2. A pragmatic patient-centric approach to benefit-risk assessment to ensure proper reflection and evaluation of the benefits and harms as experienced by patients.

Randomized clinical trials are the gold standard of evidence for evaluating the benefits and harms of medical and public health interventions.

Most trials fail to provide the evidence needed to inform medical decision-making. The serious implications of this deficit are largely absent from public discourse. DeMets and Califf, JAMA, 2011

Pragmatism and "Real World" Evidence

- Noble motivation
- Defines as obtaining the evidence that is the most useful for informing clinical practice
- However the terms are now generally defined by the data source
- The term "real world" is misleading, seemingly implying that trials that do not use associated data sources do not provide real world evidence
- Furthermore, true pragmatism requires going beyond the data source
- It involves asking the right questions, and implementing methods for trial design and analyses that are focused on <u>patient-centric</u> effectiveness

The good physician treats the disease; the great physician treats the patient who has the disease. *Sir William Osler*

Take care of your patient, not their organ. Arun Sanyal

A Leaky Roof...

- Created a water bubble in my wall
- I need a new roof and I had to re-paper the wall
- I asked my neighbor, who recently papered a similarly sized room:

"How much paper did you buy?"

He replied: "Six rolls."

Upon finishing the papering of the wall...

- I had only used only 4 rolls
- I told my neighbor that I had 2 rolls left
- He replied:

"Oh. That happened to you too?"

It's a healthy thing now and then to hang a question mark on the things you have long taken for granted.

Bertrand Russell

Let us check the clinical trial arithmetic:

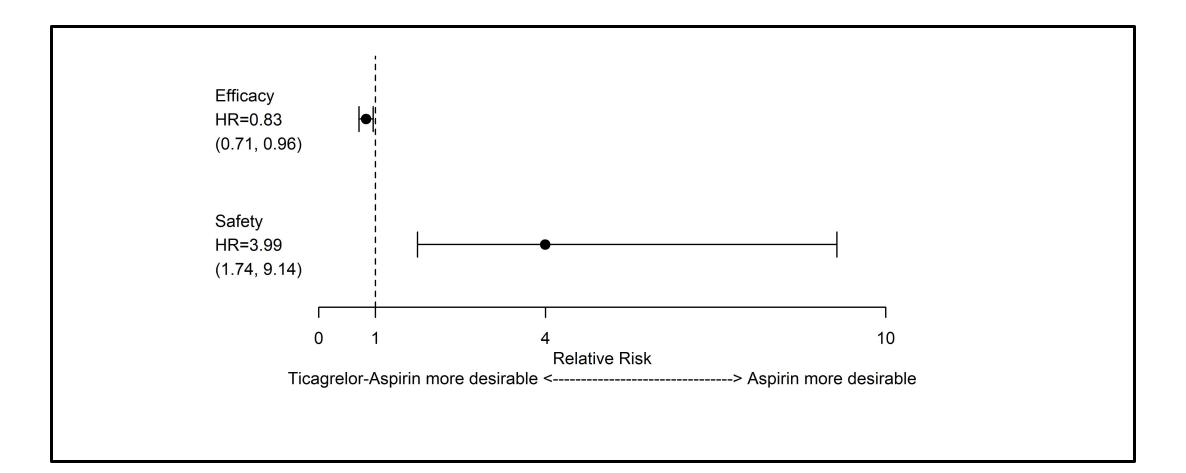
Challenges in Benefit:risk Evaluation: Totality of Evidence

- Typical benefit:risk analyses
 - Compare interventions for each efficacy and safety outcome
 - Combine these effects
- These analyses
 - Fail to incorporate associations between outcomes
 - Fail to recognize the cumulative nature of outcomes on individuals
 - Suffer from competing risk complexities during interpretation of individual outcomes, and
 - Since efficacy and safety analyses are often conducted on different populations, generalizability is unclear.

- We define analysis populations
 - Efficacy: ITT population
 - Safety: safety population
- Efficacy population ≠ safety population
- We combine these analyses into benefit:risk analyses
- To whom does this analysis apply?
- What is the estimand?

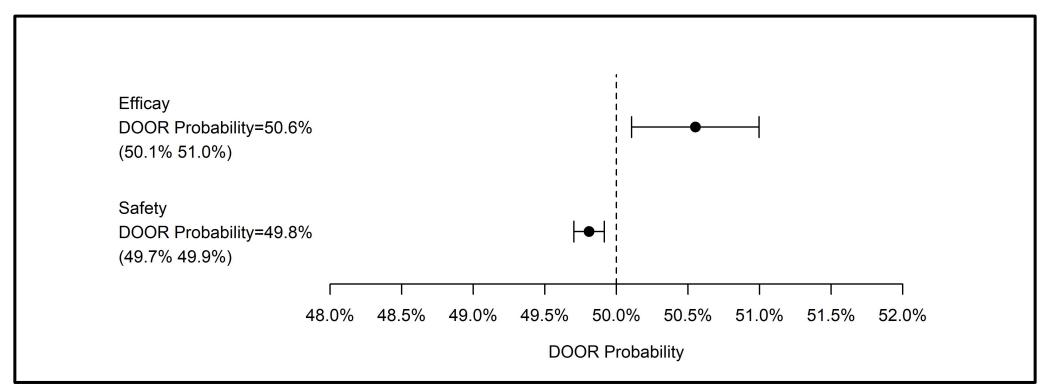
- Suppose we measure the duration of hospitalization
- Shorter duration is better ... or is it?
- The faster the patient dies, the shorter the duration
- Interpretation of an outcome needs context of other outcomes for the same patient

- Suppose risk of death increases from 1 in 10 to 2 in 10
- RR=2. Very important.
- Suppose risk of death increases from 1 in 100,000 to 2 in 100,000
- RR=2. Nearly irrelevant.
- Are relative risks and ratios what we want?
- Additional challenges arise when interpreting multiple relative risks simultaneously...



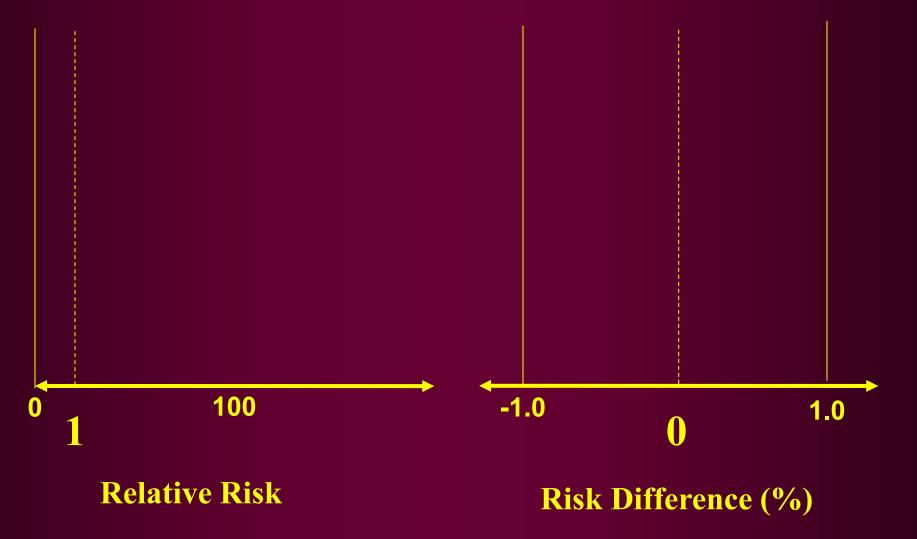
- Randomized, double-blinded, placebo-controlled trial (N=11,016)
- Primary outcome: time to stroke or death at 30 days
 - **HR = 0.83**, 95% CI = (0.71, 0.96), p=0.015
- Primary safety outcome: time to severe bleeding by 30 days
 - **HR = 3.99** 95% CI = (1.74, 9.14), p=0.001
- Too much bleeding?

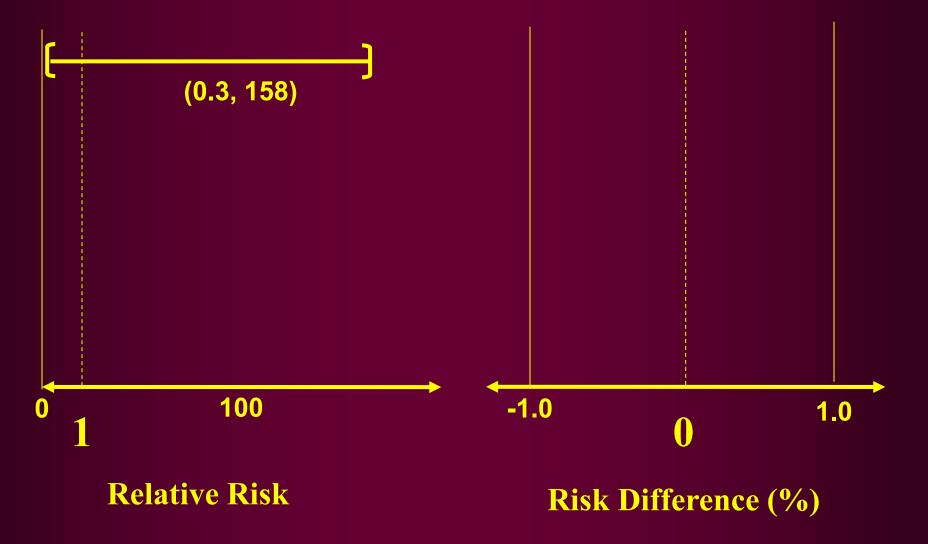
Safety Problem > Efficacy Gain?



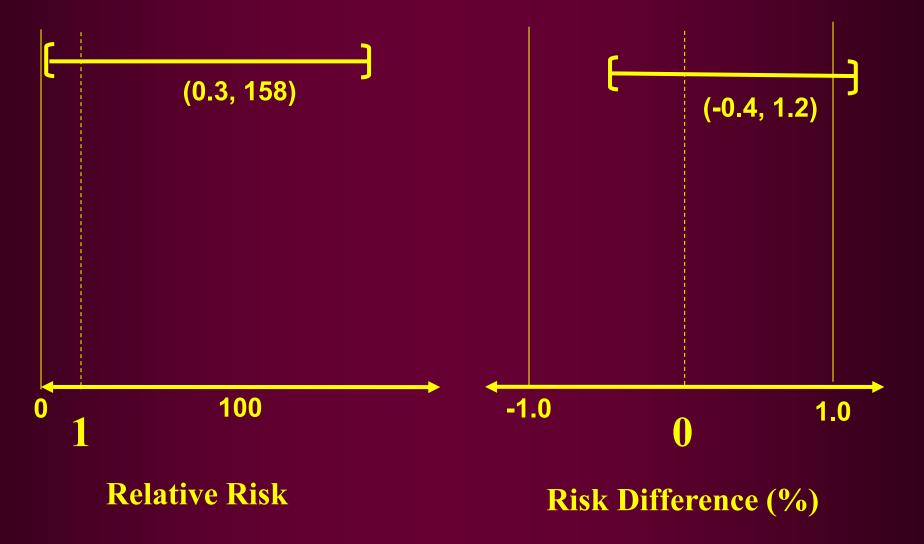
THALES

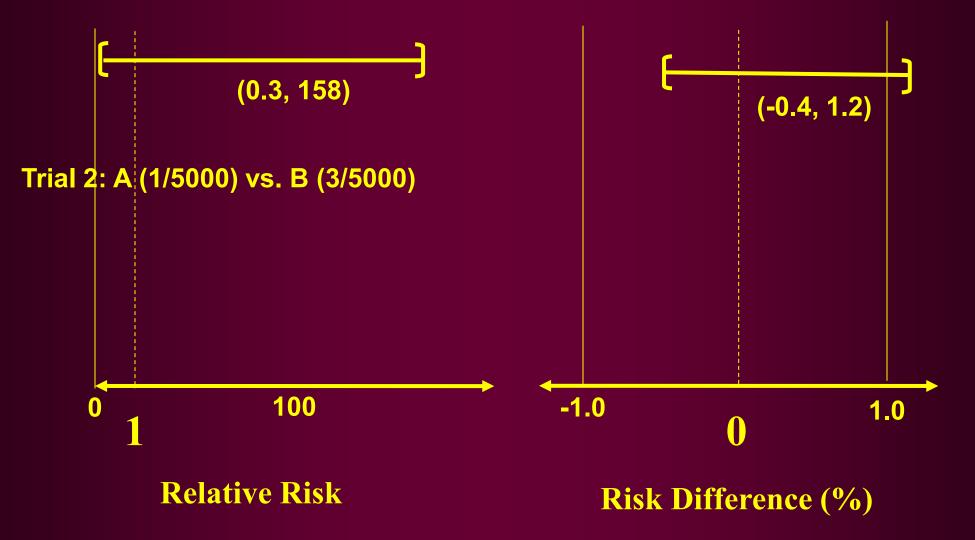
- Primary outcome: time to stroke or death at 30 days
 - Ticagrelor: 303 events (5.5%); Placebo: 362 events (6.6%)
 - Saved 59 events
- Primary safety outcome: time to severe bleeding by 30 days
 - Ticagrelor: 28 events (0.5%); Placebo: 7 events (0.1%)
 - Cost: 21 events
- Total savings: 38 events
- The benefit:risk community has known for a long time that evaluations must be on the absolute risk scale

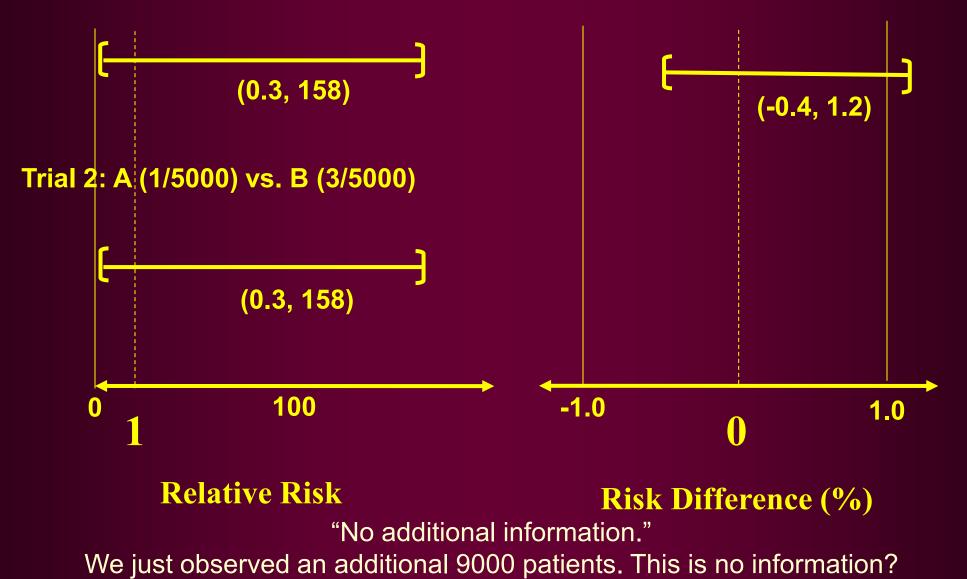

Now on an interpretable /common scale: safety issue < efficacy gain; uncertainty properly reflected

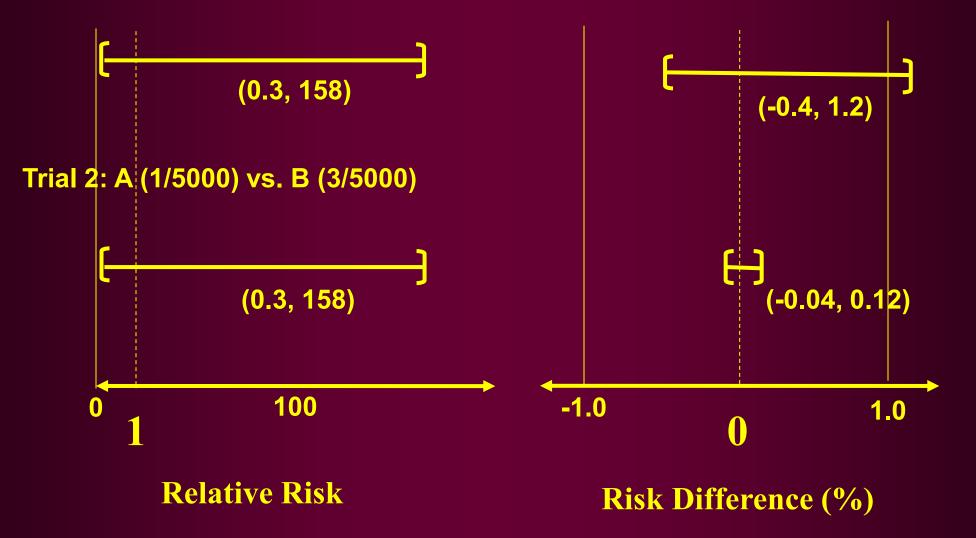

 \leftarrow Control more desirable | Ticagrelor more desirable \rightarrow

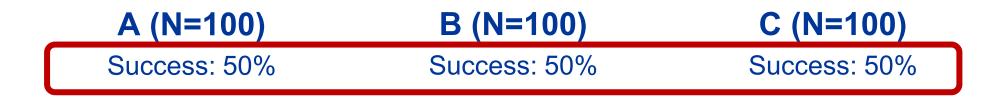
Are we being efficient with the information?


Trial 1: A (1/500) vs. B (3/500)


Trial 1: A (1/500) vs. B (3/500)


Trial 1: A (1/500) vs. B (3/500)





- Suppose a loved one is diagnosed with a serious disease
- You are selecting treatment
- 3 treatment options: A, B, and C
- 2 outcomes, equally important
 - Treatment success: yes/no
 - Safety event: yes/no

A (N=100) B (N=100) C (N=100))
------------------------------	----

A (N=100)	B (N=100)	C (N=100)		
Success: 50%	Success: 50%	Success: 50%		
Safety event: 30%	Safety event: 50%	Safety event: 50%		

A (N=100)

Success: 50% Safety event: 30% B (N=100) Success: 50% Safety event: 50%

C (N=100) Success: 50%

Safety event: 50%

Which treatment would you choose?

A (N=100)

Success: 50% Safety event: 30% B (N=100) Success: 50% Safety event: 50%

C (N=100) Success: 50%

Safety event: 50%

Which treatment would you choose?

They all have the same success rate.

A (N=100)

Success: 50% Safety event: 30% B (N=100) Success: 50% Safety event: 50% C (N=100) Success: 50% Safety event: 50%

Which treatment would you choose?

They all have the same success rate.

A has the lowest safety event rate.

A (N=100)

Success: 50% Safety event: 30% B (N=100) Success: 50% Safety event: 50%

C (N=100) Success: 50% Safety event: 50%

Which treatment would you choose?

They all have the same success rate.

A has the lowest safety event rate.

B and **C** are indistinguishable.

A (N=100)

Success: 50% Safety event: 30% B (N=100) Success: 50% Safety event: 50% C (N=100) Success: 50% Safety event: 50%

Which treatment would you choose?

They all have the same success rate.

A has the lowest safety event rate.

B and **C** are indistinguishable.

Choose A...right?

Our culture is to use patients to analyze the outcomes.

Shouldn't we use outcomes to analyze the patients?

Analysis of <u>Patients</u>: 4 Possible Outcomes

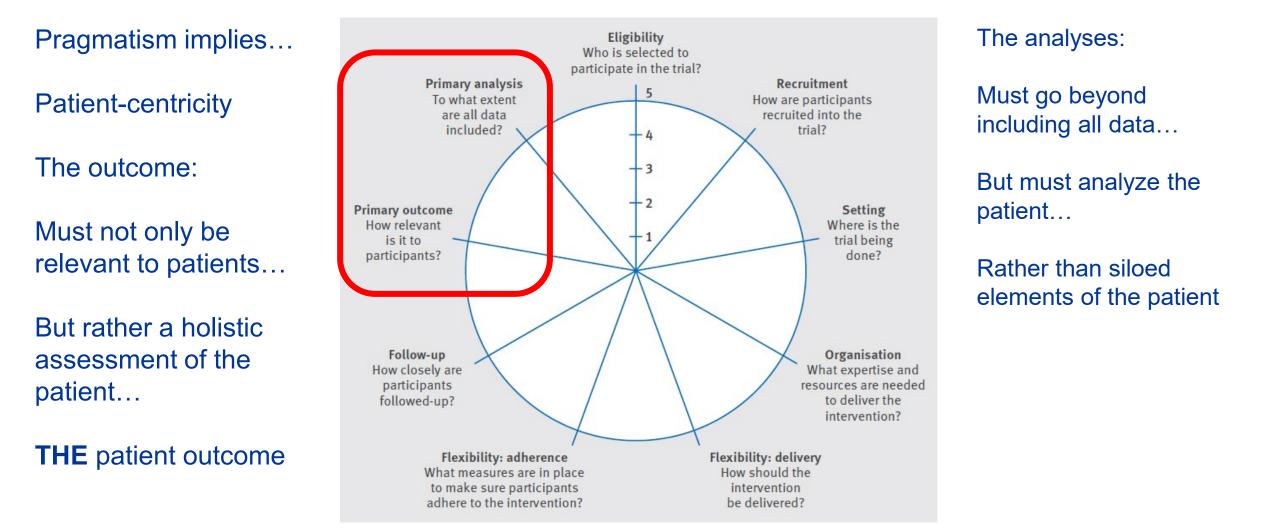
	A (N=100)				B (N:	=100)		C (N=100)		
		Succes	s: 50%		Succes	s: 50%		Success: 50%		
	Safety event: 30%				Safety event: 50%			Safety event: 50%		
	Success				Success			Success		
		+	-		+		_	+	-	
SE	+	15	15		50	0		0	50	
	-	35	35		0	50		50	0	

Analysis of <u>Patients</u>: 4 Possible Outcomes

	A (N=100)				B (N=	=100)		C (N=100)		
	Success: 50%				Succes	s: 50%		Success: 50%		
	Safety event: 30%				Safety event: 50%			Safety event: 50%		
	Success				Success			Success		
		+			+		_	+	-	
SE	+	15	15		50	0		0	50	
	-	35	35		0	50		50	0	

Analysis of <u>Patients</u>: 4 Possible Outcomes

	A (N=100)				B (N:	=100)		C (N=100)		
		Succes	s: 50%	Success: 50%				Success: 50%		
	Safety event: 30%			Safety event: 50%			S	Safety event: 50%		
	Success			Success			Success			
		+	-		+			+	-	
SE	+	15	15		50	0		0	50	
	-	35	35		0	50		50	0	



Analysis of <u>Patients</u>: 4 Possible Outcomes

	A (N=100)			B (N=100)			C (N=100)		
	Success: 50%			Success: 50%			Success: 50%		
	Safety event: 30%		Safety event: 50%		S	Safety event: 50%			
Success			Success			Success			
+ -			+			+	-		
SE	+	15	15		50	0		0	50
	-	35	35		0	50		50	0

PRagmatic-Explanatory Continuum Indicator Summary 2 (PRECIS-2) Wheel

- Many trials evaluate time-to-first event (e.g., death, MI, stroke, hospitalization)
- Fails to recognize multiple events
- Fail to distinguish differential importance of events
 - Death > non-fatal event
 - Disabling > non-disabling event
 - Permanent sequelae > transient sequelae

- Many trials use binary endpoints
- Consider "clinical failure" e.g., death or failure of symptom improvement
 - One fails because they die
 - Another fails because of a failure of symptom improvement
 - Primary analyses treats these outcomes equivalently
- Fails to recognize multiple events
 - More bad events worse than fewer

- Mortality: a simpler objective clinically important "non-composite" binary endpoint
- Its non-composite nature does not imply homogeneity of response within survival
- E.g., the response of a patient that survives without morbidity, is classified equivalently to the response of one that survives with organ support e.g., ECMO, dialysis, ... or both

There is often a reluctance to use ordinal outcomes ... perhaps due to uncertainty about how to compose, layer, or grade outcomes.

It is often believed that binary endpoints avoid this issue... though possibly unintentional or unwittingly, composing, layering, and grading are already present, resulting in incidental equivalent grading.

These gradations of responses are important... can we do better than all or nothing?

Can we design and analyze trials in recognition of this?

- A negative trial does not mean a uniformly worthless intervention
- A positive trial does not mean the intervention works for everyone
- Predictive markers typically focus on a single efficacy/safety endpoint
- How do we identify the subgroup of patients we want to treat?
- Should "personalized medicine" be based on benefit:risk?

- The effects of interventions are multi-dimensional with resulting cumulative effects on individual patients.
- Why are we not evaluating these cumulative effects?

Using Outcomes to Analyze Patients Rather than Patients to Analyze Outcomes: A Step Toward Pragmatism in Benefit:Risk Evaluation

Scott R. Evans^{a,b} and Dean Follmann^c

^aDepartment of Biostatistics, Harvard University, Boston, MA, USA; ^bCenter for Biostatistics in AIDS Research, Harvard University, Boston, MA, USA; ^cNational Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH), Bethesda, MD, USA.

Scott's father (a math teacher) to his confused son many years ago:

"The order of operations is important..."

What people think of as the moment of discovery ... is really the discovery of the question.

Jonas Salk

Provenance and Philosophy of the DOOR Paradigm

- Optimal pragmatism requires a patient-centric outcome, composing typical component outcomes to represent the patient experience
 - Not all composites need to be binary
 - Not all components need to be treated as equivalent
 - E.g., death is more important than other events
- Composite endpoint have challenges requiring attention
 - All components should be evaluated individually to see if effects go in similar vs opposing directions, and to elucidate components driving the overall response
 - Cumulative evaluation of ordinal composite
- The multiple outcome nature of the composite and associated components necessitates an absolute risk scale and avoidance of relative risk / ratio measures
- Design and analyses should prioritize robustness, objectivity, error control, and transparency, and avoidance of concessions of these principles

Desirability Of Outcome Ranking (DOOR)

- A patient-centric paradigm for the design, monitoring, analyses and reporting of clinical trials based on benefit:risk
- Uses outcomes to analyze patients rather than patients to analyze outcomes
 - Representing a closer reflection of the effects on patients
- Addresses noted challenges

Before we analyze several hundred patients, we must understand how to analyze one.

Construct patient-centric DOOR outcome based on the patient journey

DOOR Analyses

- Guiding principles for replicability, pragmatism, and robustness
- Two complimentary analyses
 - 1. Rank-based
 - Estimate the DOOR probability: the probability that a patient from treatment has a more desirable outcome than a patient on control
 - Equivalent distributions imply 50%
 - Unconventional though ... intuitively attractive
 - 2. Partial credit (grade-based analyses)
- Analyses of component outcomes is an integrated part of the evaluation

Adaptive Covid-19 Treatment Trial (ACTT-1)

- No known efficacious treatments for COVID-19 at the time
- ACTT-1
 - Randomized double-blind placebo-controlled trial of IV remdesivir in hospitalized adult COVID-19 patients w/ LRTI
 - N=1062

ACTT-1

- Important events
 - Death
 - Hospitalized with invasive mechanical ventilation / ECMO
 - SAE that is not resolved or resolved with sequelae

	Treatment		
	Remdesivir Placebo		
DOOR (Day 29)	(N=541)	(N=521)	
Alive: 0 of the other events above		382 (73.3%)	
Alive: 1 of the other events above		57 (10.9%)	
Alive: both of the other events above		6 (1.2%)	
Death		76 (14.6%)	

A northward migration to more desirable categories with treatment?

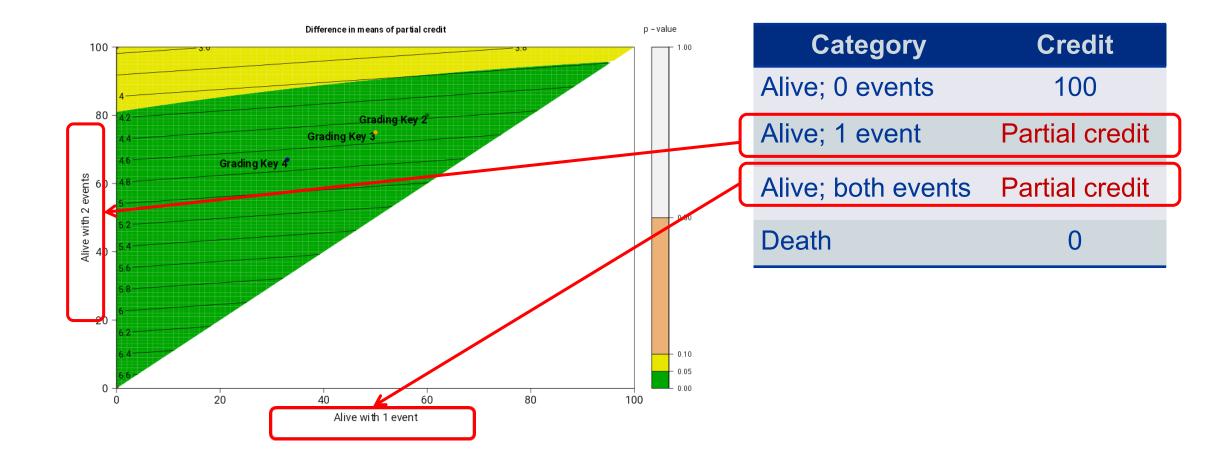
ACTT-1

- Important events
 - Death
 - Hospitalized with invasive mechanical ventilation / ECMO
 - SAE that is not resolved or resolved with sequelae

	Treatment		
	Remdesivir Placebo		
DOOR (Day 29)	(N=541)	(N=521)	
Alive: 0 of the other events above	433 (80.0%)	382 (73.3%)	
Alive: 1 of the other events above	42 (7.8%)	57 (10.9%)	
Alive: both of the other events above	8 (1.5%)	6 (1.2%)	
Death	58 (10.7%)	76 (14.6%)	

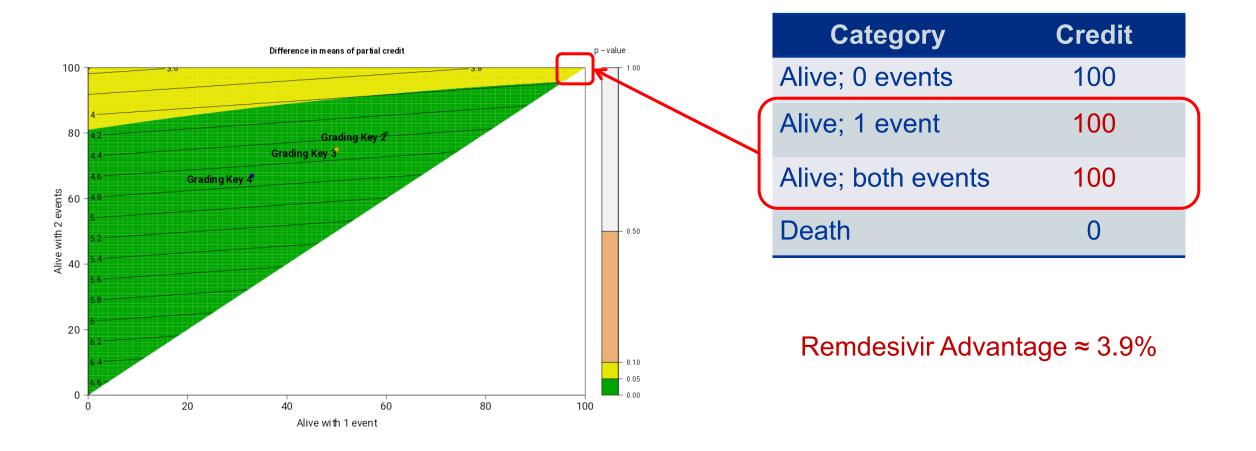
	Placebo (N=521) n(%)	Remdesivir (N=541) n(%)	DOOR probability (95% Cl)	
Primary DOOR			53.3% (50.8%, 55.9%)	
DOOR components				
Hosp. w/ invasive mechanical ventilation / ECMO	55(10.6%)	45(8.3%)	51.1% (49.4%, 52.9%)	⊢ = −1
SAE	13(2.5%)	11(2.0%)	50.2% (49.3%, 51.1%)	F-■-1
Death	76(14.6%)	58(10.7%)	51.9% (49.9%, 53.9%)	
				10% 45% 50% 55% 60% robability of a more desirable result comparing Remdesivir vs. Placebo
			I	Favors Flacebo Favors Remdesivir

Partial Credit


	Score
1. Alive: 0 of the events	100
2. Alive: 1 of the events	Partial credit
3. Alive: both of the events	Partial credit
4. Death	0

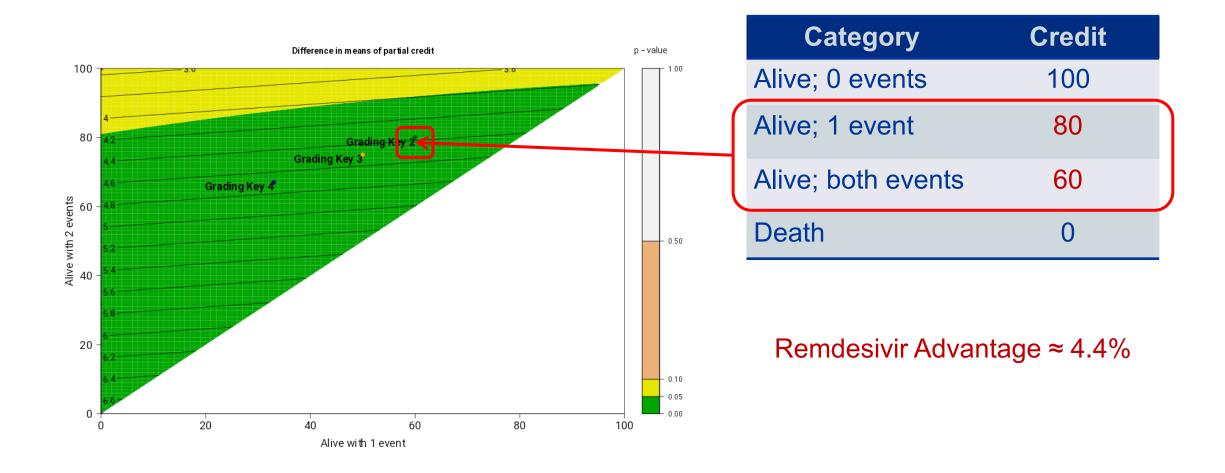
Partial credit can be used to account for:

- 1. Strategic distancing between steps in a calculated way
- 2. Personalized perspectives among patients / clinicians regarding the desirability of the categories
- 3. Robustness analyses



Contours of Effects as Partial Credit Varies

The Easy Grader

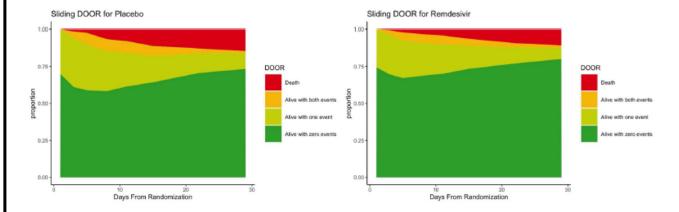


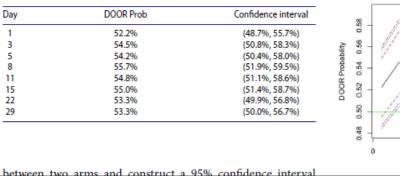
The Curmudgeon Professor

The Layered Compromise

Sliding DOOR

- View DOOR outcome as a longitudinal patient state
- Methods for:
 - Repeated measures
 - Simultaneous confidence bands
 - Monotone progression
 - Multidimensional RMST
 - Non-monotone levels
 - Anthology of Patient Stories


Sliding DOOR


Longitudinal Benefit:risk Analysis through the Desirability of Outcome Ranking (DOOR) with Application to ACTT-1 Trial

Shiyu Shu, Guoqing Diao, Toshimitsu Hamasaki & Scott Evans

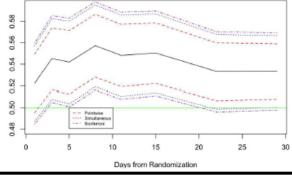
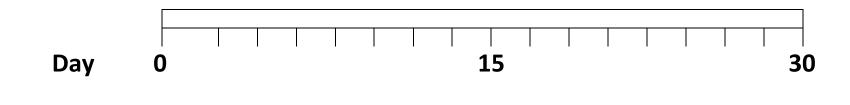
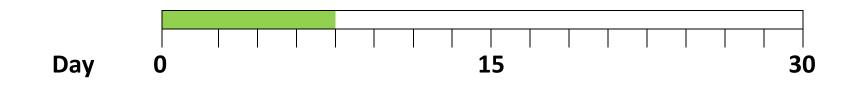


Table 2. DOOR probability estimates over time.



Anthology of Patient Stories


- Recognize the non-monotone nature of the patient status
 - Status could improve or decline
- Recognize
 - When events occur and for how long
 - If and when they recover
 - If and when they relapse
- Retain patient-centricity

Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	

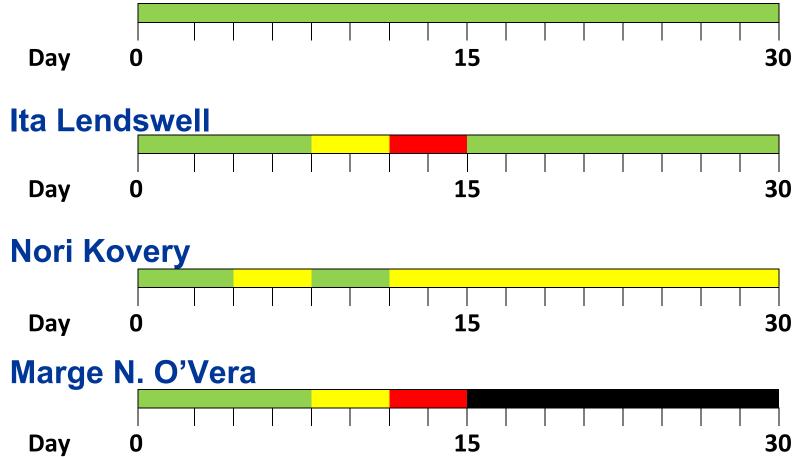
Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	

Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	

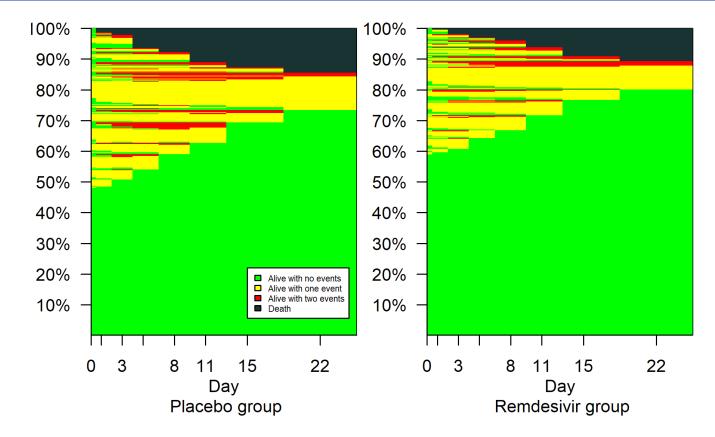
Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	


Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	

Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	



Alive with 0 events	
Alive with 1 event	
Alive with 2 events	
Death	

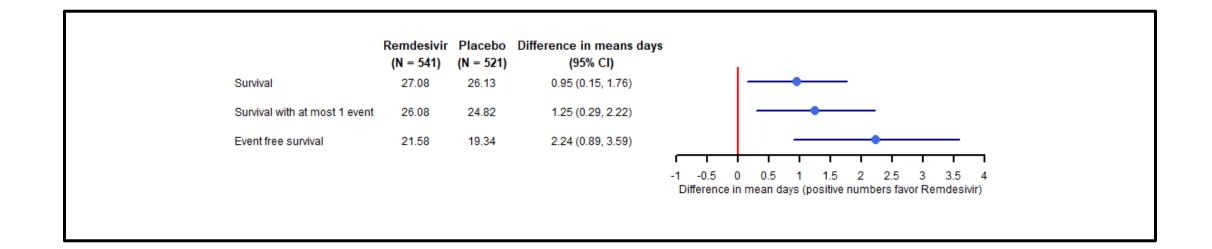

The Trial Anthology: A Collection of Patient Stories

Saul Goodman

The Trial Anthology of Patient Stories

- Mortality at Day 29: 14.6% in placebo; 10.7% in Remdesivir
- No events at Day 29: 73.3% in placebo; 80% in Remdesivir
- No events in all time intervals: 48% in placebo; 58.8% in Remdesivir

Sliding DOOR Analyses

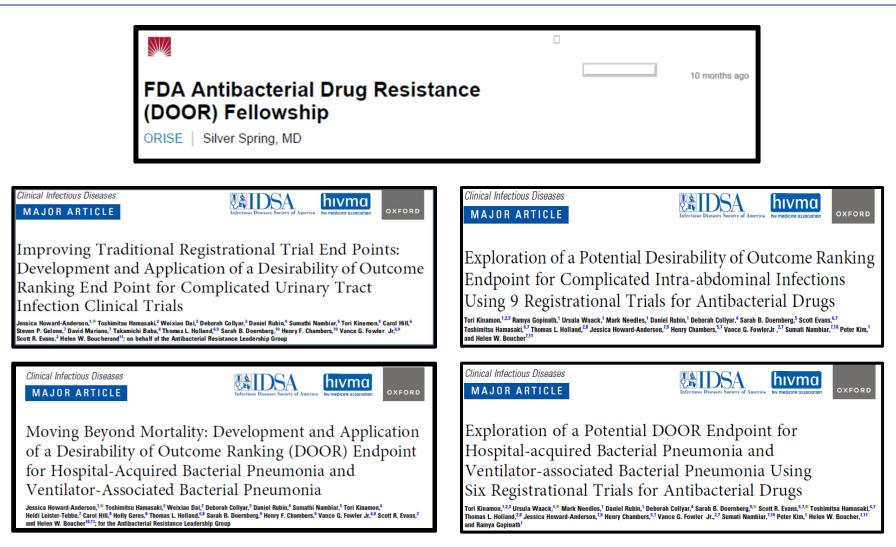

- Ranking strategy
 - First priority: DOOR at day 29
 - For survivors: further rank using average events per day (time-weighted) ... larger average is worse

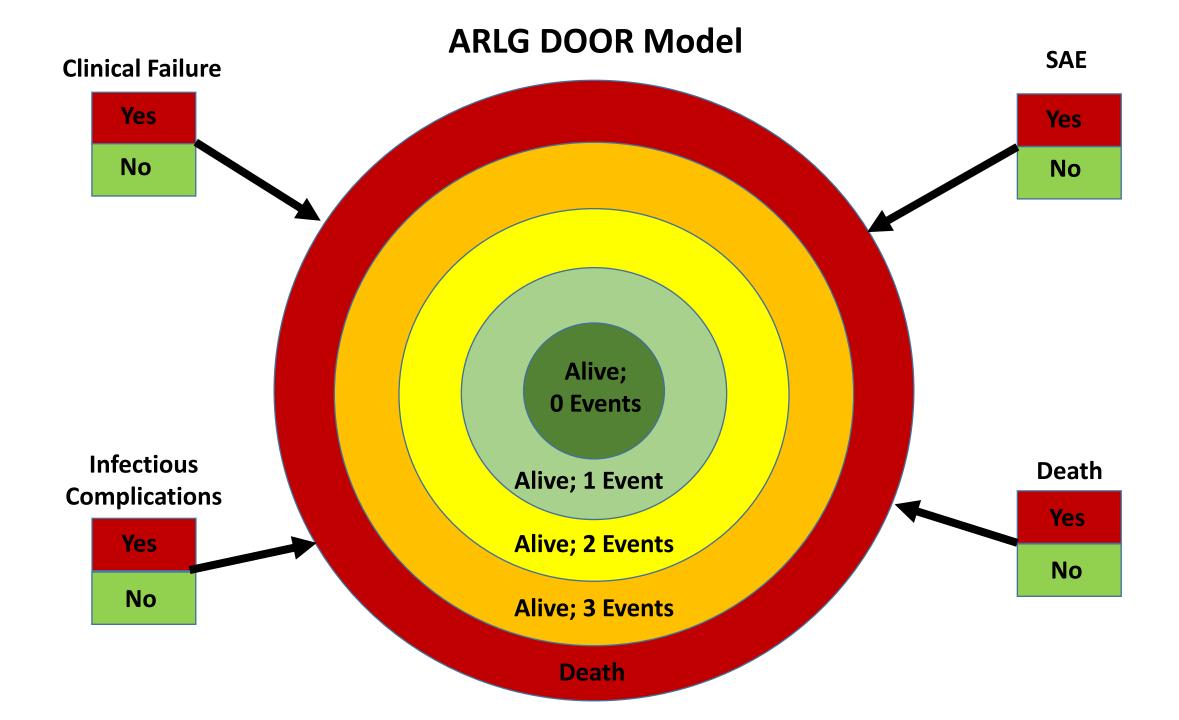
Estimate of DOOR probability of a more desirable result with Remdesivir vs. Placebo

55.9% (95% CI: 52.7% - 59.1%)

ACTT-1 DOOR RMST: Cumulative Days Gained / Lost

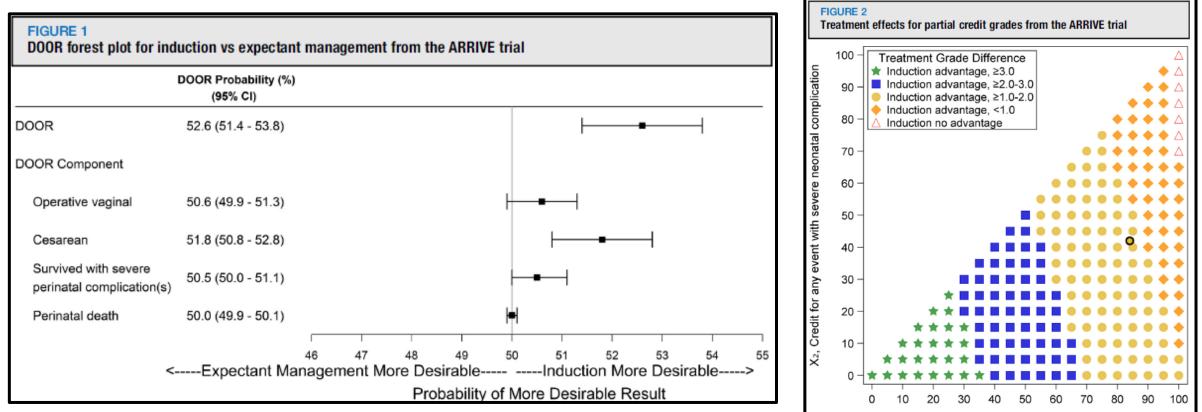
Defining the DOOR Outcome


- Goals:
 - Define gradations of patient response to recognize importantly different outcomes
 - Ensure gradations of response are clinically meaningful
 - Simplicity
- Evaluating the tradeoffs among individual outcomes, and the cumulative nature of benefits and harms on patients
- Methods that have been used to guide construction include
 - Conjoint analyses
 - Delphi analyses
 - Surveys of expert clinicians and patients
 - Discussion with regulators


Clinical Infectious Diseases	Infectious Diseases Society of America hymedicine association	
Good Studies Evaluate the Disease Evaluate the Patient: Developmen		
of a Desirability of Outcome Rank Staphylococcus aureus Bloodstrear	king Endpoint for m Infection	
Sarah B. Doernberg, ¹ Thuy Tien Tram Tran, ² Steven Y. C. Tong, ^{3,4} Mical Paul, ^{5,6} Dafna Yah: G. Ralph Corey, ¹² Sara E. Cosgrove, ¹² Henry F. Chambers, ¹ Vance G. Fowler, ¹² Scott R. Eva Leadership Group		

- ARLG conducted a pre-trial sub-study to develop DOOR in *Staphylococcus aureus* bacteremia
- 20 representative patient profiles (benefits, harms) constructed based on experiences observed in prior trials
- Profiles sent to 43 expert clinicians. They were asked to rank the patient profiles by desirability of outcome.
- Examined clinician consensus and component outcomes that drive clinician rankings

Regulator, Academic, Industry Collaboration


Cardiovascular Prevention DOOR (CAR-DOOR?)

- Events of interest
 - Death
 - Stroke
 - MI
 - Major bleeding
- DOOR
 - Alive with no events
 - Alive with 1 non-disabling event
 - Alive with >1 non-disabling event
 - Alive with disabling event
 - Death

OBSTETRICS

Desirability of outcome ranking for obstetrical trials: illustration and application to the ARRIVE trial

Grecio J. Sandoval, PhD; William A. Grobman, MD, MBA; Scott R. Evans, PhD; Madeline M. Rice, PhD; Rebecca G. Clifton, PhD; Suneet P. Chauhan, MD, Hon DSc; Maged M. Costantine, MD; Kelly S. Gibson, MD; Monica Longo, MD, PhD; Torri D. Metz, MD, MS; Emily S. Miller, MD, MPH; Samuel Parry, MD; Uma M. Reddy, MD, MPH; Dwight J. Rouse, MD; Hyagriv N. Simhan, MD; John M. Thorp Jr, MD; Alan T. N. Tita, MD, PhD; George R. Saade, MD; On behalf of the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development Maternal-Fetal Medicine Units (MFMU) Network

X1, Credit for cesarean with no perinatal event

Metabolic Health

- Diet-induced adiposity causes metabolic stress, systemic inflammation and fibrosis
- This affects the:
 - Arteries (hypertension, CVD, CAD, PVD)
 - Heart (HFPEF)
 - Liver (NAFDL)
 - Pancreas (T2D)
 - Kidney (CKD)
 - Brain (cognitive decline)
 - and other organs
- These afflictions have shared biology and occur in the same individual patients
- Yet evaluation of treatments is organ-specific
- However, the benefits of treatment may be broader, affecting multiple organs, resulting in greater overall benefits to the patient than organ-specific evaluations would uncover

Rigor, Robustness, and Discipline

"Clinical trials are the best medical invention in history.

They don't make them like they used to."

The current President of the Society for Clinical Trials

Clinical Trials

Strengths, weaknesses, opportunities, and threats (SWOT) analyses

Strengths

- Randomization (the foundation for statistical inference)
- Blinding
- Control groups
- Prospective observation
- ITT (protects the benefits of randomization; assesses pragmatic questions)
- Standardization of measurement and procedures
- A comprehensive protocol outlining scientific strategy and operational approaches
- Pre-specification of endpoints and hypotheses providing multiplicity context and a framework by which to control errors and provide the correct coverage probabilities
- Protection of trial participants, society, and trial integrity via independent monitoring of benefits and harms by DSMBs
- Registration which increases transparency and helps to curtail selective reporting

Weaknesses

- Expensive and resource intensive
- Time-consuming
- May lack generalizability and clinical applicability if not pragmatic, for example with use of restrictive entry criteria, surrogate rather than clinical endpoints, other than ITT analysis sets, and marginal analyses of endpoints rather than patient-centric evaluation

Opportunities

- Greater pragmatism: more relevant questions and answers for clinical decision-making
- Emerging technologies to timely obtain important data
- Improving clinical trials education with emphasis on fundamentals of the scientific principles and operations
- Improvement to DSMB processes

Threats

- Innate desire to do things faster and cheaper which can threaten objectivity, and result in studies with low replicability, integrity, and applicability
- Insufficient education regarding the role of clinical trials as a scientific instrument rather than a commercial tool
 - A "successful trial" has been perverted to imply a positive trial, rather than a trial that addresses important questions and gets robust answers to those questions regardless of the directionality and magnitude of the treatment effects
 - We should be objective about the objective, i.e., striving to correctly "determine whether" an effect exists rather than "to establish" that one does
- A decline of academic leadership in clinical trials. David DeMets and FDA Commissioner Rob Califf wrote "where have the academics gone?"

Threats

- Misinformation, disinformation, and incomplete information regarding the merits of trending methods and technologies
 - Some approaches are labeled as innovative, presented with a degree of commercialism rather than scientific objectivity. Closer evaluation reveals that they are fancy ways of lowering the usual integrity and evidentiary standards and introduce greater uncertainty through concessions of:
 - (i) randomized evidence for non-randomized evidence;
 - (ii) controlled evidence for uncontrolled evidence'
 - (iii) robustness via greater reliance upon assumptions,
 - (iv) objectivity via the incorporation of beliefs,
 - (v) transparency relenting to black box approaches, and
 - (vi) the theoretical foundation for statistical inference.
 - See efforts to protect the scientific community from compromises in scientific rigor and the decline in integrity in e.g., Emerson and Fleming telling "the rest of the story" and Collins, Bowman, and Landray, and Peto's "The magic of randomization versus the myth of real-world evidence".

We share a duty in protecting the ideals.

Guiding principles for maximizing pragmatism, robustness, replicability, objectivity, and transparency

Patient-centricity and pragmatism preservation
Analyze the patient story / journey; recognize the cumulative nature of effects
Distinguish important gradations of patient response
Best Practices
Composite endpoints (integrated presentation of component analyses)
Multi-outcome / benefit:risk analyses (analyses based on the absolute risk scale
providing a common scale for simultaneous interpretation of multiple outcomes)
Ordinal outcomes (cumulative analyses)
Statistical Integrity and Discipline
Robustness: avoid / minimize reliance upon assumptions e.g., common odds,
distribution of treatment effects, specification of model form, for analysis validity
Incorporate competing risks
Intention-to-treat principle with full analysis set for all outcomes (clarity of
generalizability; known applicability at the time of treatment initiation)
Objectivity: free from subjective beliefs
Defined population parameters and estimands
Theoretical foundation for the confirmatory evidence standard
 Unbiased estimates of treatment effects
 Correct coverage probability for confidence interval estimation
Error control in hypothesis testing
Incorporation of ties into rank-based statistics utilizing pair-wise comparisons
Implementation of rank-based and grade-based analyses of treatment contrast
Evaluation of robustness of grade-based analyses

The DOOR paradigm was designed to meet these principles.

A comprehensive statistical analysis plan was developed in line with the principles.

Comprehensive Statistical Analysis Plan

- To optimally reflect the experience of patients we must change the order of operations, composing information within patient
- Composite endpoints have challenges
 - Reporting data on all components is advised to reveal and understand the full story
 - Comprehensive understanding requires careful evaluation the relative importance of the components, which components are driving the observed effects, and whether the effects on the components go in similar vs. opposing directions
- An absolute risk scale is required to interpret multiple outcomes together

Freely available online software was designed to produce all of the output with the statistical analysis plan.

The software will be submitted as a regulatory science tool.

Milken Institute SchoolTHEof Public HealthBIOSTATISTICSTHE GEORGE WASHINGTON UNIVERSITYCENTER

A Patient-Centric Paradigm for Clinical Research: The DOOR is Open Design and analysis of clinical trials and other research using the DOOR methodology

Toshimitsu Hamasaki, PhD, MS, Pstat® Scott R. Evans, PhD, MS

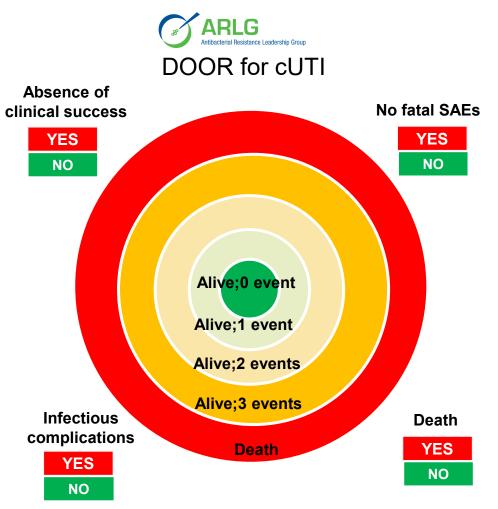
The Biostatistics Center | Department of Biostatistics and Bioinformatics Milken Institute School of Public Heath | The George Washington University

10 April 2025 at 9:30-12:00 @ Medical University of Vienna Wiener Biometrische Sektion der Internationalen Biometrischen Gesellschaft Region Österreich – Schweiz

A Patient-Centric Paradigm for Clinical Research: DOOR is Open Objectives

- To discuss statistical methods for design and analysis of the DOOR methodology in clinical trials and other clinical trials, that have been adapted in the web-based tools
 - DOOR analyses: Rank-based and grade-based analyses
 - □ Sample size and power assessment
- To demonstrate, using web-based tools

Application of the DOOR


DORI-05: doripenem vs. levofloxacin

How to analyze the DOOR outcome?

DOOR rank	Doripe	nem	Levoflox	acin
category	Freq	Prop (%)	Freq	Prop (%)
Alive with no events	263	70.3	253	67.6
Alive with 1 event	93	24.9	111	29.7
Alive with 2 events	16	4.3	9	2.4
Alive with 3 events	1	0.3	1	0.3
Death	1	0.3	0	0
Total	374	100	374	100

From a randomized double-blind clinical trial that evaluated whether intravenous (IV) administration of doripenem (DORI) was inferior to IV administration of levofloxacin in patients with cUTI (complicated urinary tract infection) (Naber KG et al. Antimicrob Agents Chemother 2009; 53:3782-3792) (Howard-Anderson J at. Clin Infect Dis. 2023; 76:e1157-e1165)

Renal or intraabdominal abscess; Septic shock; Bacteremia; Recurrent UTI or pyelonephritis; *C. difficile*

Common Statistical Concerns

Ordinal outcomes analysis

Analysis		Concern
Responder analysis	 Dichotomize ordinal outcome to a binary outcome i.e., responder vs non-responder. Estimate odds ratio of responder vs non-responder between groups; conduct associated hypothesis testing for the odds ratio 	 Loss of information and potentially power by ignoring finer but important gradations of patient status Robustness: assumption-reliant (e.g., the model linearity) Interpretations are not intuitive
Proportional	Estimate common odds ratio by	Robustness: assumption-reliant

Proportional odds regression

- Estimate common odds ratio by proportional odds regression; Conduct associated methods for hypothesis testing and interval estimation
- Robustness: assumption-reliant (e.g., the model linearity, proportional odds)
- Interpretations are not intuitive

The DOOR Methodology

Key principles

Sensitivity	Robustness	Unbiased estimators
Simple tools for assessing the robustness of results	Avoidance of reliance on strong and unconfirmable assumptions	Avoidance of over or under- estimation of treatment effects
Simple implementation No advanced mathematical skills or programming knowledge required 	KEY PRINCIPLES	Error controls Avoidance of false positive or false negative results
Generalizability Clearer estimands and population	Intuitive reporting & presentation Enhanced understanding, informed decision-making, better communication with patients	Intuitive measures A clear and easily interpretable summary measure

Analytical Methods

Analyses of DOOR outcomes

DOOR probability-based analysis

Partial credit analysis

- **Rank-based analysis**: Distribution-free
- Pairwise comparisons at individual patient level
- □ The DOOR probability
 - A patient randomly selected from one group has a more desirable outcome than a patient randomly selected from the other group
 - 50% if two DOOR outcomes are identical between groups
 - Estimated by Wilcoxon-Mann-Whitney (WMW) statistic

□ Grade-based analysis

- Evaluation of the relative importance of DOOR outcome categories: robustness analyses
- Methods for continuous outcomes as if they were continuous after assigning grading keys
 - Welch t-statistic based method

The DOOR Probability

The DOOR probability-based analysis

- The DOOR probability $\pi_{E\geq C} = \mathbb{P}[Y^E > Y^C] + 1/2\mathbb{P}[Y^E = Y^C] = 1 \pi_{C\geq E}$
 - A probability that a participant's outcome in Experimental (E) Y^E is more desirable than that of a participant in Control (C) Y^C (Evans et al. 2015; Evans and Follmann 2016)
 - Unbiased, estimated by WMW statistic (Wilcoxon 1945; Mann and Whitney 1947) corrected for ties
 - ▷ $\pi_{E\geq C} = 0.5$ if Y^E and Y^C are identically distributed, but $\pi_{E\geq C} = 0.5$ does not support this
 - Does not depend on the specific potential outcome pairings; Population causal effect, not individual causal effect (Fay et al 2018)
 - > Can be applicable to continuous, binary, and time-to-event outcomes as well

Simonoff JS et al. Biometrics 1986; 42:895-907. Fay MP et al. Stat Med 2018;37:2923-2937

The DOOR Probability: Confidence Intervals (CIs)

The DOOR probability-based analysis

Methods	Feature	Reference
Wald-type	 Easy to construct Symmetric CIs; the lower or upper limit may fall outside of [0, 1] in extreme cases. 	Ryu, Agresti. Stat Med 2008; 27:1703-1717.
Halperin et al (1989)	 Easy to construct Asymmetric CI; given by solving the quadratic inequity (chi-square statistic) 	Halperin M. et al. Biometrics 1989; 45:509-521.
tahn ⁻¹ transformation	 Easy to construct Asymmetric CI; Construct a Wal type CIs on a logit scale and then back-transform it to the original scale 	Edwardes M. Biometrics 1995; 51:571-578
Score/Pseudo- Score; Likelihood	 Require an iterative procedure Asymmetric CIs; Need to restricted maximum likelihood estimates of category proportions given a value of π_{E≥C} 	Ryu, Agresti. Stat Med 2008; 27:1703-1717.
Bootstrap percentile	 Easy implementation, but computationally intensive compared to other methods Asymmetric CIs 	van Duin D et al CID 2018; 66:163-171.

The DOOR Probability: Recommendations on CIs

The DOOR probability-based analysis

Recommend using the Halperin et al. method (or tanh⁻¹ transformation based method)

- □ Works well (in terms of coverage probability); Easy to construct with the closed form, without the need for an iterative procedure
- Tends to be "liberal" when the group sample size is extremely unbalanced (4:1 allocation ratio or higher) and sample size is smaller; Use the Halperin et al. (1989) with the pseudo-score approach

Do not use Wald-type Cls.

- □ very liberal, failing to control for the coverage probability at the desired confidence level. particularly in small sample sizes and/or unbalanced sample sizes between groups
- □ The lower or upper limit of these intervals may fall outside of [0, 1], in near-extreme cases; the DOOR probability distributions is not symmetric

Occasionally can use score, pseudo-score, and likelihood Cls

- □ Work well, but generally "conservative" with small sample sizes
- Require an iterative procedure; Fail to find the restricted likelihood estimates with small sample sizes
- □ Fails to find the restricted likelihood estimates with small sample sizes.

Better to avoid using Bootstrap percentile Cls

Generally "liberal", better than Wald-type CIs but never better than CIs by Halperin et al.

The DOOR Probability: Other CIs

The DOOR probability-based analysis

- CI based on the statistic discussed in Brunner and Munzel (2000)
 - \square Symmetric CI , centered at $\hat{\pi}_{\rm E\geq C}$: the same disadvantages of the Wald-type CIs
 - > Ex. The lower or upper limit may fall outside of [0, 1] in extreme cases
 - Performs better than the Wald-type CIs, but not as well as the Halperin, score, or pseudo-score CIs (Ryu and Agresti, 2008)

DOOR Probability: Hypothesis Tests

The DOOR probability-based analysis

Hypothesis (Superiority)

One-sided
$$\begin{cases} H_0: \pi_{E \ge C} \le \delta_0 \\ H_1: \pi_{E \ge C} > \delta_0 \end{cases}$$
 two-sided
$$\begin{cases} H_0: \pi_{E \ge C} = \delta_0 \\ H_1: \pi_{E \ge C} \ne \delta_0 \end{cases}$$
 $\delta_0: 0.5$ generally chosen

- Natural to implement the WMW test for the hypothesis test for DOOR probability as the DOOR probability is equivalent to the WMW statistic
- A concern: The normal approximation to the WMW statistic to calculate p-values may be often inaccurate when the outcomes are heavily tied?
 - Correction for continuity by shifting the value of the statistic (e.g., see Lehman and D'Abrera (1975))
 - □ **the t-approximation** for the p-value calculation to improve the normal approximation.
 - However, these p-values generally tend to be "conservative", less than the desired significance level

Lehmann E, D'Abrera H (1975). Statistical Methods Based on Ranks. Holden-Day.

DOOR Probability: Recommendations on Hypothesis Test The DOOR probability-based analysis

Recommend using the normal approximation WMW test without continuity correction

□ works well, controlling the Type I error probability at the desired significance level

- tends to be conservative when the total sample size is 50 and the group sample size unbalanced, such as 7:3 allocation ratio or higher
- p-values from using continuity correction and/or t-approximation generally tend to be "conservative", less than the desired significance level

Do not use O'Brien–Castelloe method or log Win odds-based method

■ fails to control the Type I error probability at the desired significance level appropriately: the Type I error probability is inflated

Limitations

The DOOR Probability-based Analysis

- The DOOR probability may not provide the appropriate amount of influence to each specific rank category.
 - An individual pairwise comparison is labeled a "more desirable", "less desirable", or "tie", depending on whether the experimental group patient had a more desirable, less desirable, or tied DOOR outcome.
 - Ex. "Alive with no event vs. Alive with 1 event" = "Alive with no event vs. Death"

	Doripenem	Levofloxacin
DOOR rank category	Freq	Freq
Alive with no events	263	253
Alive with 1 event	93	111
Alive with 2 events	16	9
Alive with 3 events	1	
Death	1	0
Total	374	374

Grade-based Analysis: Partial Credit Analysis

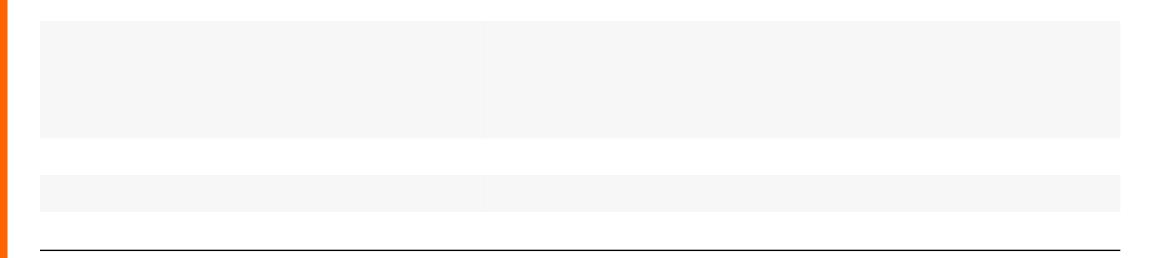
Robustness of the DOOR probability-based analysis

• Assigns the relative importance to each category directly.

DOOR rank category	Score	
Alive with no events	100	Partial Score 1
Alive with 1 event	0≤Partial Score 1≤100	
Alive with 2 event	0≤Partial Score 2≤100	Partial Score 2
Alive with 3 events	0≤Partial Score 3≤100	\geq Partial Score 3
Death	0	

- Conduct an analyses consist of estimating the between-group difference in mean scores on a 100point scale as if the outcome was "continuous"
 - □ Welch's t-statistic based approach for two-group comparisons.
 - The range of scores is limited from 0 to 100, and the possible values of scores are limited: Using the Welch t-statistic can at least protect against false positive conclusion.
 - Can still implement the rank-based method
 - Assigning the same partial credit score to different adjacent rank categories results in those categories being combined into one category.

Analytical methods ARLG recommendations


Analysis	Outcome	Statistical method
Descriptive analysis	DOORComponents	 Summary distribution table by intervention group Bar-chart by intervention group
	 DOOR and Components 	 Anthology of Patient Stories (APS) plot
Rank-based analysis: DOOR	DOORComponents	 Forest Plot of estimates of the DOOR probability for the DOOR outcome and respective components
probability	DOOR	 Forest plot of the estimates for the cumulative DOOR probability based on sequential dichotomization of the DOOR outcome
Grade-based Analysis: Partial Credit	• DOOR	 Welch's t-statistic based analysis Scatter plot of the differences in mean partial credit between interventions vs the corresponding DOOR probabilities

Online tools for implementing DOOR analyses

DOOR analysis apps

	Standard Edition	Professional Edition
Data Input	Summary table by group	Individual patient-level data
Analysis		
 Descriptive analysis Summary table Bar-chart Anthology of patient stories plot 		

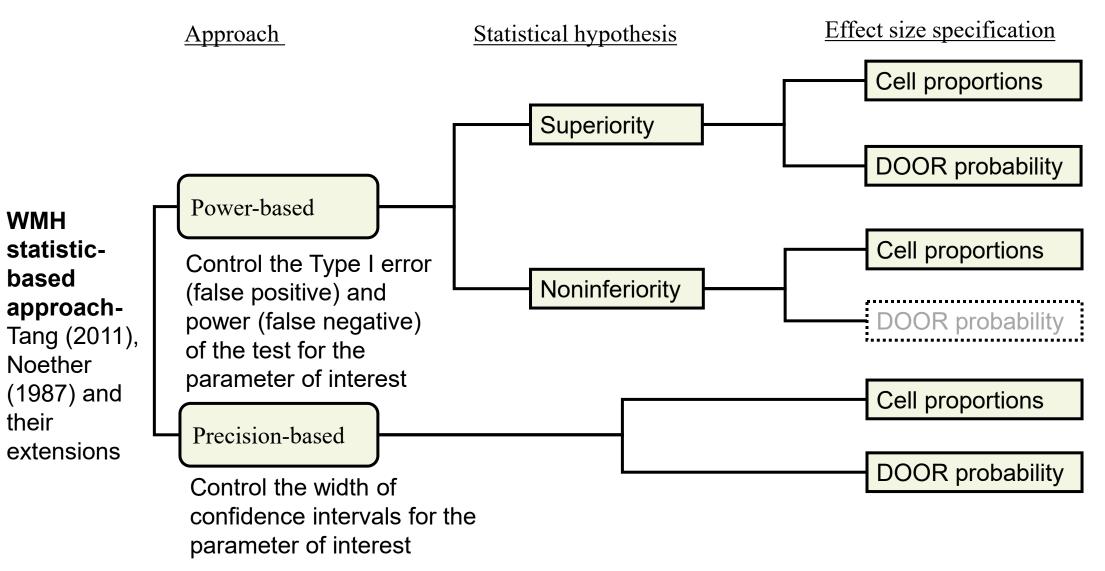
Power-based approach: Superiority clinical trials

Closed form sample size

Methods	Feature	Reference
Tang (2011)	 Requires category proportions Assumes in n/(n − 1) → 1 for large sample size (this approximation works well if the sample size is extremely small, e.g., 10) 	Tang Y. Stat Med 2011; 30:3461- 3470.
Zhang et al (2008)	 Requires category proportions Assumes σ_A ≈ σ₀: the approximation becomes inaccurate when the DOOR probability to be detected is far from 50%. 	Zhao YD et al. Statistics in Medicine, 27, 462–468
Noether (1987)	 Requires DOOR Probability to be detected, not category proportions Ignores ties → larger variance → larger sample size Available in commercial software (nQuery, SAS etc) 	Noether GE. J Amer Stat Assoc, 1987; 82:645–647
tahn ⁻¹ transformation based method/O'Brien and Castelloe (2006)	 Requires category proportions Assumes in n/(n − 1) → 1 for large sample size Available in commercial software (SAS) Related to Win Odds 	O'Brien RG, Castelloe JM. SAS Users Group Int Conf, SAS Institute 2006

The DOOR Probability: Other methods for sample size calculations

The DOOR probability-based analysis


- Kolassa (1995)
 - Introduced a method for calculating power by approximating the unconditional distribution of the WMW statistic under the null and alternative hypotheses using the first four moments of the distribution.
 - > Lacks a closed-form solution for sample size calculation- need for an iterative procedure
 - Works well for equally sized groups but performs poorly when the intervention groups are of unequal sizes or when the sample size is small (Tang 2015).
- Wellek (2017); Zho, Zou, and Choi (2022)
 - Discussed WMW-based methods for sample size calculation in clinical trials with ordinal outcomes for superiority and/or noninferiority trial designs.
 - Proposed closed-form solutions
 - □ Were unable to replicate their results- so did not adapt them in the web tools

Kolassa JE. Stat Med 1995; 14:1577–1581. Tang Y. Commun Stat-Simul Comput 2015; 45:240–251. Wellek S. Stat Med 2017; 36:799-812. Zou G et al. Stroke 2022; 53: 3025-3031.

Designing clinical trials with the DOOR methodology

Power and sample size determination

Online tools for implementing DOOR analyses

Analysis app standard edition demonstration

DOOR Analyses: Standard Edition Data Input Table Descriptive Analysis DOOR Probability-Based Analysis Partial Credit Analysis Support

Configurations

Data Input Table

DOOR Distribution by Intervention

Comparison Group		DC	OR Distribution by Intervention	
Test Intervention Label		DOOR (Most desirable to least desirable) Rank	Treatment	Control
Treatment		Deck 4		
Control Intervention Label		Rank 1		
Control		Rank 2		
		Rank 3		
DOOR and DOOR Components Pre-specified Settings		Rank 4		
Default				
Derault		Rank 5		
Data Format		Total (N)		
Frequencies (N) Percentages (%)				
# of DOOR Ranks (Maximum: 10)				
5	0	DOORCo	omponents Distribution by Interve	ention
# of DOOR Components (Maximum: 10)		DOOR Component	Treatment	Control
4	0			
		Component 1		
Descriptive Analysis Unit for Expected Gained (+) or Loss (-)		Component 2		
1000		Component 3		
	~			
		Component 4		
Analysis and Reporting		Component 4		
Confidence Level for DOOR Probability Confidence Interval (CI)	0.95 0.99	Component 4		

Online tools for designing clinical trials with the DOOR methodology

Power and sample size determination demonstration

DOOR: Power and Sample Size Assessment ≡

Assessment	DOOR Probability to Be Detected	Configurations/Settings	
Approach Power Precision Type of Comparison Superiority Non-inferiority Solve for Sample Size Power 	DOR Probability [Test >= Control] Defined by ● DOR Category Proportions (%) ● DOR Probability (%) S Image: Control Category Proportions (%) by Intervent (Rank 1: most desirable to Rank 5: least desirable to Rank 5: least desirable to Rank 5: least desirable to Rank 1 Image: Control Rank 1 Image: Control Rank 1 Rank 1 Image: Control Rank 5 Image: Rank 3 Image: Control Rank 5 Image: Rank 4 Image: Control Rank 5 Image: Rank 4 Image: Control Rank 5 Image: Rank 5 Image: Control Rank 5 Image: Rank 6 Image: Control Rank 5 Image: Rank 7 Image: Control Rank 5 Image: Rank 7 Image: Control Rank 7 Image: Rank 7 Image: Control Rank 7	One or Two-sided Test One-sided Two-sided Two-sided Significance Level (α) (e.g., 0.05, 0.025) 0.05 O.05 O.05 Allocation Ratio (e.g., 0.5 means equally sized group) 0.5 Osired Power (1-β) (%) (e.g., 80, 90) 80 Stressment by Simulation Power Evaluation by Simulation No Yes	JOOR Probability of Null Hypothesis (%) 50 Method Method by Tang (2011) Normal Approximation Method by Noether (1987)

More to come!

Online tools for the DOOR Methodology

- Monitoring of clinical trials, including group-sequential and adaptive designs
- □ Covariate-adjusted analysis: stratified analysis
- Subgroup analysis
- □ Integrated analyses: meta-analysis
- □ Longitudinal time-to-event type DOOR outcomes (Shu S et al 2024)

Yijie He 4th year student in PhD Program (Applied Biostatistics Track)

Qihang Wu 2nd year student in PhD Program (Applied Biostatistics Track)

Shu S et al. Stat Biopharm Res 2024, 1–8 (First published online on 02 December 2024 as doi: 10.1080/19466315.2024.2413059)

Milken Institute School
of Public HealthTHE
BIOSTATISTICS
CENTER

If I had one hour to solve a problem... I would spend 55 minutes defining and understanding the problem... and 5 minutes solving it.

Albert Einstein

Summary

- Place interest on pragmatic questions to match their clinical importance
 - Implies a patient-centric benefit:risk focus
- Elevate patient-centric benefit:risk from a post-hoc exercise into trial design and conduct
- DOOR
 - Patient-centric paradigm for the design, data monitoring, analysis, interpretation, and reporting of clinical trials and other studies based on benefit-risk evaluation
 - Uses outcomes to analyze patients for a closer reflection of the effects on patients
 - Robust analyses

Summary

- Ongoing DOOR work
 - Regulatory science tools for design and conduct
 - DOOR outcome development with FDA and academic colleagues
 - Meta-analyses (for FDA)
 - Subgroup evaluation
 - Interim monitoring (group sequential and adaptive designs)
 - Covariate-adjusted analysis / stratified analysis
 - Longitudinal time-to-event type DOOR outcomes
 - Cluster randomization

Significant Contributors (p<0.001)

- Faculty: Guoqing Diao, Greg Sandoval
- NIH: Dean Follmann, Colin Wu
- FDA: Dan Rubin, Gene Pennello
- PhD students: Weixiao Dai, Yijie He, Richard Shu, Lizhao Ge, Shanshan Zhang, Lijuan Zeng, Wanying Shao, Yike Wang, Qihang Wu
- The Antibacterial Resistance Leadership Group
- FDA ORISE DOOR Fellowship team
- ACTT-1 research team
- George Saade, MD
- Arun Sanyal, MD
- Chip Chambers, MD

DMCs

Published January 10, 20 NEJM Evidence DOI: 10.1056/EVIDctw21000	(1) Published January 24, 2
INICAL TRIALS WORKSHOP DSMB MINI-SERIES Independent Oversight of Clinical Trials through Data and Safety Monitoring Boards	CLINICAL TRIALS WORKSHOP DSMB MINI-SERIES The Data and Safety Monitoring Board: The Toughest Job in Clinical Trials Scott R. Evans, Ph.D., ¹ Lijuan Zeng, M.H.S., ¹ and Weixiao Dai, M.S. ¹
	Scott R. Evans, Fil.D., Eljuar Zeng, W.T.S., and Weixiao Dai, W.S.
	Therapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-024-00727-1
rtps://doi.org/10.1007/s43441-024-00720-8	
herapeutic Innovation & Regulatory Science https://doi.org/10.1007/s43441-024-00720-8 REVIEW nside the Mind of the DMC: A Review of Principles and Issues with Case Studies	https://doi.org/10.1007/s43441-024-00727-1

Pragmatic Diagnostic Evaluation

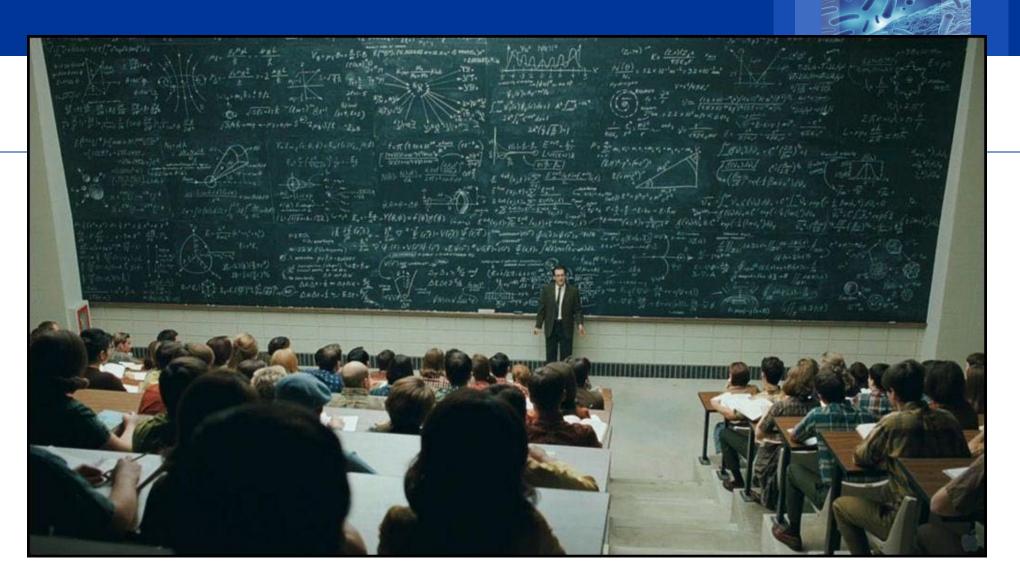
Clinical Infectious Diseases

INVITED ARTICLE

HEALTHCARE EPIDEMIOLOGY: Robert A. Weinstein, Section Editor

Benefit-risk Evaluation for Diagnostics: A Framework (BED-FRAME)

Scott R. Evans,^{1,2} Gene Pennello,³ Norberto Pantoja-Galicia,³ Hongyu Jiang,² Andrea M. Hujer,⁴ Kristine M. Hujer,⁴ Claudia Manca,⁵ Carol Hill,⁶ Michael R. Jacobs,⁴ Liang Chen,⁵ Robin Patel,⁷ Barry N. Kreiswirth,⁵ and Robert A. Bonomo⁴; for the Antibacterial Resistance Leadership Group


Intention-to-diagnose and distinct research foci in diagnostic accuracy studies

Scott R Evans, Gene Pennello, Shanshan Zhang, Yixuan Li, Yike Wang, Qian Cao, Lauren Komarow, Toshimitsu Hamasaki, Victoria Petrides, Kristen Meier, Norberto Pantoja Galicia, Vance G Fowler Jr, Helen W Boucher, Sarah B Doernberg, Ritu Banerjee, Maria Helena Rigatto, Barry N Kreiswirth, Robert A Bonomo, Henry F Chambers, Robin Patel

The intention-to-diagnose principle, an analogue to the intention-to-treat principle in clinical trials, protects the Lancet Infect Dis 2025 foundation for inference in diagnostic test accuracy studies. This foundation provides for robust control of error rates during hypothesis testing and correct coverage probability during confidence interval estimation of accuracy parameters, in well defined populations for transparent generalisability. The intention-to-diagnose principle requires distinguishing between warjous non positive non pogative (NIRNN) test results, such as equiveral and invalid results

Published Online March 27, 2025 https://doi.org/10.1016/ S1473-3099(25)00070-2

We have no doubt that you will enthusiastically applaud now ... because you are so relieved that it is over. Thank you.