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My position
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Outline

In my talk, I would like to . . .

. . . provide a motivation why longitudinal data analyses are frequently
encountered in (bio-)medical research, in particular in rare diseases

. . . present some “points to consider” when deciding for the one or the
other (nonparametric) approach

. . . sketch some ideas for future research in this area
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Motivation part 1: Tumor growth in preclinical research
on rare diseases
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Motivation part 1: Tumor growth in preclinical research
on rare diseases

(Maybe) a standard example – but:

. . . (very) small samples

. . . transformations of the data? Reliability of measurements?

. . . missing data – missingness mechanism?

. . . how to adjust for potential baseline differences in tumor volumes?

. . . etc.

Most of these challenges (and some more) also apply to clinical data
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Motivation part 2: The EBStatMax project

The EBStatMax project’s aims are to reanalyze the data using various
state-of-the-art methodologies, provide recommendations for future trials,

devise computational tools for practitioners in order to implement results in
concrete trial analysis, and design educational material.

[This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 825575] 7 / 42



Motivation part 2: The EBStatMax project

Longitudinal cross-over design
⇒ Every subject k is observed repeatedly at t time points (t = 4 time
points per period)
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Motivation part 2: The EBStatMax project

Ordinal outcomes: visual analogue scales or quality of life
questionnaires
⇒ analyzed using nonparametric methods

For complex longitudinal designs (e.g cross-over), appropriate methods
for analyzing purely ordinal outcomes are scarce

state-of-the-art nonparametric approaches:

nparLD – R package
generalized pairwise comparisons (GPC)
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Methods: Introduction

Two treatment groups (placebo vs. verum) within each period, t time
points per period, n subjects.

Furthermore, we assume X (j)
iks

iid∼ F (j)
is , that is, we denote the marginal

distribution of group i ∈ {1, 2} within period j ∈ {1, 2} at time point
s ∈ {1, . . . , t} by F (j)

is .

It should be noted that no specific parametric assumptions are made on
F (j)

is .
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Methods: nparLD

The R package nparLD provides user-friendly access to robust
rank-based methods for the analysis of longitudinal data in factorial
settings

Notational system: each design depends on the number of factors

Fx - LD - Fy, where x and y are the number of whole- and sub-plot
factors, respectively.

Our setting:

Number of levels of group (whole-plot factor): 2
Number of levels of time (sub-plot factor): 4
F1 - LD - F1 Model

We are only interested in answering the question whether the
longitudinal profiles of the VAS scores differ between verum and
placebo – we are testing for a nonparametric interaction effect
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Methods: nparLD

One may use the ANOVA-type statistic (ATS):

An(C) =
n

tr(CV̂)
θ̂T Cθ̂, (1)

where C is the hypothesis matrix,

θ̂ represents the vector of “estimated relative effects”
θ̂11, . . . , θ̂1t , θ̂21, . . . , θ̂2t , and

V̂ is the corresponding covariance matrix estimator.

The sampling distribution of An(C) can be approximated by a F(f̂ ,∞)

distribution, where f̂ = (tr(CV̂))2

tr(CV̂CV̂)
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Relative effects

For independent rv’s X ∼ F ,Y ∼ G,

θ := P(X < Y ) +
1
2

P(X = Y ) =

∫
FdG

Pairwise relative effects: a independent samples, i.e., observations
Yi1, . . . ,Yini

i.i.d.∼ Fi , i ∈ {1, . . . , a}, all Y11, . . . ,Yana independent,

θij := P(Yi1 < Yj1) +
1
2

P(Yi1 = Yj1),

Drawback of pairwise relative effects – not transitive (e.g., Thangavelu
and Brunner 2007)
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Relative effects

Comparison to a reference distribution:

θi = P(W < Yi1) +
1
2

P(W = Yi1) or

ψi = P(Z < Yi1) +
1
2

P(Z = Yi1),

where Yi1 ∼ Fi ,W ∼ H, and Z ∼ Hψ, i ∈ {1, 2, . . . , a}.

H and Hψ denote the weighted and unweighted averages, respectively,

H(x) :=
1
N

a∑
i=1

niFi(x),

Hψ(x) :=
1
a

a∑
i=1

Fi(x).

Extensions to multi-factorial designs (including repeated measures) by
splitting up the index i
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Estimation

Applying the plug-in principle (i.e., replacing the population CDFs by
their empirical counterparts) yields

θ̂i :=
1
N

(
R̄i. −

1
2

)
,

ψ̂i :=
1
N

(
R̄ψ

i. −
1
2

)
.

Here, R̄i. and R̄ψ
i. denote the group-specific averages of the classical

ranks Riℓ and the so-called pseudo-ranks Rψ
iℓ , which are defined as

follows:

Riℓ :=
1
2
+ NĤ(Yiℓ),

Rψ
iℓ :=

1
2
+ NĤψ(Yiℓ),

for i ∈ {1, 2, . . . , a} and ℓ ∈ {1, 2, . . . , ni}.
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Methods: GPC

With a single outcome and no missing data, the GPC test is a linear
transformation of the Mann-Whitney test

The GPC method evaluates X(j)
ik (i.e., the vector of period-specific

longitudinal measurements of subject k in group i) by constructing all
possible pairs (one from each treatment arm), and subsequently
assigning a score to each pair.

GPC variants:

Univariate GPC
Prioritized GPC
Non-prioritized GPC
Matched GPC
Unmatched GPC
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Methods: GPC

A summary measure per period can be constructed, which is compared
per pair (= univariate GPC) or the longitudinal VAS scores can be
compared in a multivariate way by comparing the VAS scores per
timepoint between pairs (= multivariate GPC).

Matched GPC compares treatment arms only within the same subject,
while the unmatched approach compares each subject from the
placebo group with each subject of the treatment group.

Per pair, a score Ukℓ corresponding to the uni- or multivariate
comparison of the VAS scores, denoted by V1k for patient k under
verum and V2ℓ for patient ℓ under placebo, is assigned as follows (with
k , ℓ ∈ {1, . . . , n} for the unmatched GPC and k = ℓ for the matched
GPC) :

Ukℓ =


1, if V1k > V2ℓ

−1, if V1k < V2ℓ

0, if V1k = V2ℓ,
(2)

17 / 42



Methods: matched vs. unmatched prioritized GPC
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Methods: GPC

In order to construct a GPC test statistic, the scores Ukℓ are averaged
and divided by an appropriate estimator of the standard error.

Effect measure: average of the scores = “net benefit”

Finally, “classical” approaches (e.g., sign test) can be used for
calculating p-values, etc.

Details are provided, e.g., in Buyse (2010).
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Simulation design

Main aim: Ensure that the simulation setting closely resembles the
real-life data, while at the same time being as “neutral” as possible w.r.t.
comparing the different methodological approaches!

We have n subjects observed repeatedly at t = 4 time points per period
in a crossover trial

For each subject k ∈ {1, 2, . . . , n}, we have a pair (X1k ,X2k ) of vectors
with 4 components each (corresponding to the 4 time points per period)

In each simulation run, the blocks Xik were randomly permuted across
all subjects.
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Simulation Design

For the power simulations, the following steps were carried out:

1 Random variables Zk
iid∼ D, k ∈ {1, 2, . . . , n}, were generated, where D

was either a normal distribution N (µnorm, 1) or a lognormal distribution
LN(µlog, 1), with µnorm ∈ {2, 3, 4} and µlog ∈ {0.2, 0.6, 0.9}.

2 These random variables (Zk )
n
k=1 were subsequently added to the

observations from the placebo group. Two different scenarios were
considered:

Scenario 1: The random variables were added to the VAS
scores under placebo at the third time point (i.e., the
post-treatment visit) only.
Scenario 2: The random variables were added to the VAS
scores under placebo at the third time point and
additionally, (Zk/2)n

k=1 were added at the fourth time point.
3 The corresponding “new” observations resulting from Step 2 were

appropriately cut off and rounded, if required, in order to adequately
represent VAS scores.
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Simulation Design

This setup is closely aligned with clinical expertise (w.r.t. distributions &
parameters)

R = 5000 simulation runs were performed. The resulting empirical
power values are based on using the two-sided level α = 0.05.

Following in- and exclusion criteria were used:
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Results
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Results
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Discussion

Still, comparing the methods “neutrally” is somewhat challenging:

nparLD: analyses could only be conducted for each period separately
⇒ cross-over aspect partially lost

univariate GPC: based on summary measurement
⇒ longitudinal information partially lost

matched GPC: based on a pairwise comparison between both periods
⇒ several subjects had to be excluded due to missing data

missing data: problem for nparLD and univariate GPC approaches
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Discussion

Matched GPC was rather conservative

nparLD liberal only in a few scenarios

nparLD: high power despite a smaller sample size (n = 6, n = 7; as a
result of period-specific analyses) → good performance with (very)
small sample sizes

prioritized unmatched GPC achieved highest power
⇒ prioritization of the time points has a big impact on power
(prioritized based on clinical reasoning)
⇒ different prioritization might lead to a deterioration
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EBStatMax – project output
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EBStatMax – project output
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EBStatMax – project output

https://ebstatmax.ejprarediseases.org/
https://imt.erdera.org/collection/ebstatmax/ (more generally
on EBStatMax and the key project outcomes)
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EBStatMax – project output
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Ongoing and future research

Consider a simplified, yet still sensible version of the EB example

Primary endpoint: VAS score at post-treatment visit

Adjustment for the baseline VAS score (see “EMA guideline on
adjustment for baseline covariates in clinical trials”,
EMA/CHMP/295050/2013)

Semiparametric mean-based setting: (M)ANCOVA with minimal
assumptions (e.g., Zimmermann et al., JMVA 2020).

Nonparametric (rank-based) uni- and multivariate analysis of
covariance?

From a project-level perspective, this research is embedded within
servEB (federal state of Salzburg; grant no. 20102/F2300645-FPR) and
a WEAVE project (FWO – FWF; grant no. 10.55776/PIN9834224)
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Ongoing and future research

Let Xi1k ∼ Fi1 denote an iid sample of the outcome variable and
Xirk ∼ Fir , r = 2, . . . , h denote samples of the h − 1 covariates,
i ∈ {1, 2, . . . , a}.

The corresponding relative effects are denoted by qi1 and qi2, . . . , qih,
respectively.

The estimated covariate-adjusted relative effects q̂∗
1 , . . . , q̂

∗
a are defined

as follows (Bathke and Brunner 2003):

q̂∗
i = q̂i1 −

h∑
r=2

γ̂r q̂ir (3)

Thereby, the procedure underlying the estimation of the coefficients
γ̂2, . . . , γ̂h is based on the idea of minimizing the variance.
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Ongoing and future research

H0 : TF = 0, where T is an appropriate contrast matrix, and F denotes
the vector (F11, . . . ,Fa1)

′, i.e., the group-specific CDFs of the outcome.

Using q̂∗ := (q̂∗
1 , . . . , q̂

∗
a )

′, the ANOVA-type statistic is defined as
follows:

AN =
Nf · (q̂∗)′Tq̂∗

tr(TΣ̂∗
N)

(4)

The distribution of the ATS under H0 can be approximated by a χ2
f̂

distribution, where

f̂ =
tr(TΣ̂∗

N)
2

tr(TΣ̂∗
NTΣ̂∗

N)
(5)

The estimator of the covariance matrix Σ̂∗
N is quite complicated (see

Bathke and Brunner 2003).
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Ongoing and future research

As an alternative to the approximation, we consider a classical
nonparametric as well as a wild bootstrap approach

Bootstrapping is performed at the level of the so-called “rank
transforms” (i.e., the estimated average CDF evaluated at the original
observations)

The bootstrap version of the ATS is then essentially the ATS (4), which
is calculated based on the bootstrapped rank transforms instead of the
original rank transforms.

Under mild standard assumptions in an asymptotic framework, this
approach yields an asymptotic level α test.

Formal details and proofs are provided in the preprint Thiel et al. (2025).
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Simulation results (example)

Table: Empirical type-I error on discrete ordinal data with α = 5%.
Values exceeding a 95% Wald interval are highlighted. Legend: (FA1)
F approximation unadjusted; (CA) χ2 approximation NANCOVA;
(FA2) F approximation NANCOVA; (EB) Efron bootstrap NANCOVA.

n1:n2 FA1 CA FA2 EB
10:10 5.14 8.34 6.76 3.82
8:12 4.70 8.16 5.98 3.40
5:15 6.60 10.46 7.36 4.92
20:20 4.68 6.14 6.42 4.64
16:24 5.44 6.32 5.18 4.26
10:30 5.58 7.66 5.36 4.92
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Simulation results (example)

Table: Empirical power on discrete ordinal data with α = 5%.
Configurations where the empirical type-I error substantially exceeds
α are greyed out. Legend: (FA1) F approximation unadjusted; (CA)
χ2 approximation NANCOVA; (FA2) F approximation NANCOVA;
(EB) Efron bootstrap NANCOVA.

n1:n2 FA1 CA FA2 EB
10:10 49.38 73.30 68.60 59.38
8:12 46.68 72.22 64.68 56.26
5:15 40.98 62.36 51.64 40.82
20:20 79.58 94.84 93.20 93.32
16:24 77.64 94.48 92.62 92.00
10:30 63.66 87.00 82.48 78.12
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Back to preclinical research: Tumor growth

The applied researchers asked many questions

Structured approach: Systematically collecting the questions from a
“core group” of researchers . . .

. . . and a subsequent rating process.

Prioritization of 2-3 topics.

Then: Asking the collaboration partners for data examples → basis for
simulation scenarios

Current status: Preparing the datasets and simulation scenarios,
selection of methodological approaches / literature search.

Final goal: Answering the questions by simulations and/or theoretical
considerations (or existing literature)
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Wrap-up and take-home messages

Research at the interface between statistics and applications in rare
diseases means: Whenever you are not quite sure which method to
use, there is a good reason for doing methodological research.

There are many different approaches for longitudinal data analysis
available, which use (slightly) different effect measures (e.g.,
importantly, interaction effects based on relative effects vs. GPC / net
benefit)

Therefore, systematic comparisons of these different approaches as
well as detailed investigations regarding various subtle issues are much
needed

So, on the one hand, there is a huge number of potentially useful
methods in some situations...

... on the other hand, however, there is still room for methodological
improvements and even for developing novel methods in some highly
relevant settings (e.g., covariate adjustment)
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Thank you for your attention!
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